Quantcast
Channel: 科學傳播 – PanSci 泛科學
Viewing all 1714 articles
Browse latest View live

【GENE思書軒】死了一個研究生以後,道出了學術倫理

$
0
0

醫學論文造假事件

去年醫學論文造假事件鬧到最鬧烘烘時,很多圈內的朋友也都不約而同做了很多相同的夢,內容非常真實又刺激,曲折離奇到說出夢境都絕對要發表不自殺聲明。

毫不例外的,現實當然也要比很多影視作品還更變態,狗血狂灑到編劇都嚇到吃手手,不信看看從造假後一路走來,台灣高等教育和學術圈在面對愈來愈嚴峻的國際競爭壓力下,各種明爭暗鬥、扯後腿、落井下石,真是令人眼花撩亂,難怪台灣書市的大眾小說幾乎全都變小眾了,因為讀報紙就比大眾小說精彩。

圖/pixabay

醫學論文造假事件後,除了造成有學校沒有校長,很多新同事和助理、學生要去上所謂的學術倫理課,以及信箱不時收到誠信電子報,在制度和體制上幾乎沒有任何改變。相信再來一次,同樣的戲碼又不會不再重演一遍,然後更多無辜的人要逼得寫作文,或小說

讓科學界莘莘學子重新點燃希望

這是一個很難讓人樂觀的年代,不過在這個現實虛構顛三倒四的惡質現狀下,慶幸的是有部優異的作品橫空出世了!在紛紛擾擾的環境中,這本小說卻很瘋刺的比讀報紙才知道的事情還來得更像是真實的!

在一系列造假事件中,學術圈內異常的安靜,就連我夢中在醫院裡工作的線民,都回報說醫院內所有人上班時都完全不像聽說任何事一樣,在茶餘飯後都完全沒人想要提到這件事,一整個河蟹到可怕,據說膽敢要說八卦的話,都要作夢跑離院外好幾公里外才行,果然比台日版的《白色巨塔》(白い巨塔)還變態,還好是作夢夢到的。學術圈內的大佬也沒人敢出來批評什麼,只有個位數學者敢在媒體上大量投書。

就在那幾位膽敢大量投書媒體的人物中,最突出的就是國立宜蘭大學生物機電工程學系特聘教授 ──《科學月刊》、《科技報導》前總編輯蔡孟利老師,以專業證據、實際訪談為基礎,提出強力的質疑,是極少數的正義之聲。據說他母校已有很多師生及校友感到 ⋯⋯ 因此,台灣就平添了一位優異的小說家!

龍困淺灘,不死也傷!

科學的價值、教育的價值、大學的價值,在純粹的名利追逐下,無形中崩壞!有人還敢說在學者和官員的這些作為下,能帶給社會正面的力量,以及給予莘莘學子追求和現實夢想的勇氣嗎?!難怪人才加速流失。好棒棒,沒有關係,很可以,我們還有小說《死了一個研究生以後》。

在「死了一個研究生以後」 ……

在細胞培養室裡無預警地開了一氧化碳自殺,然後她就死掉了。讓一個宅男在十幾天中步向人生中,比做實驗追求知識更真實的探索之旅,探索學姐的死因、探索人生中的其他面向、探索愛情。科學研究,原本就是要犧牲一個人很多很多青春和精力的,可是換來的不是高尚的理念,而是成了追名逐利下被吃掉也不痛不癢的小棋子,都不知大人要怎麼教小孩了。

原本以為,《死了一個研究生以後》只是一本人物對白簡單的爆料驚悚小說,可是沒想到這卻是一本文學性頗強的小說,甚至讓人忘了真實世界中的論文造假事件,即使真實的世界的夢境中,真的死了人。

我相信,沒讀過《死了一個研究生以後》的朋友遠超過讀過的,因為讀過的朋友見面時都不約而同問對方讀過了沒,即使不是生科人,也讀得津津有味。很難想像理工宅的處女作,就交織出複雜的劇情、深厚的感情、合理的線索,讓讀者跟著一位宅男抽絲剝繭,並且在宅了很多年的象牙塔脫困後在現實世界中遭遇各種逃避過的衝撞,簡直就是本宅男的異想世界,宅得很精彩!

死了一個研究生以後》中的命案把一自以為投身科學研究的宅男搞得七葷八素,現實中更多阿宅的故事只恐怕更杯具。《死了一個研究生以後》把一個宅男的生活和心理刻畫得入木三分,包括對正妹們的諸多性幻想。我雖然一點也不宅,但看看周遭的宅男們,也感到好親切和熟悉。

圖/pexels

作為一部傳說中的推理小說,《死了一個研究生以後》是有些不足,就是壞人實在太善良了,果然學界大佬都還是吃素的,讓結尾對照整本小說而言顯然不夠緊張刺激。連邪惡的老闆也只能拿科學哲學大師孔恩 (Thomas S. Kuhn,1922-1996)《科學革命的結構》(The Structure of Scientific Revolutions) 的典範論來打打嘴炮,讓我真想巴他兩下,用力打臉說他怎麼知道他的典範不會被轉移掉,造個屁假啦。然而,瑕不掩瑜,近年台灣已少有這麼優異的小說問世了!

泛科學現在推了個泛科幻獎,徵求短篇和中短篇科幻小說。我已想好兩部科幻推理小說的題目了:《死了一個大學校長以後》,以及其續集《死了一個教育部長以後》,請大家拭目以待,期待都能在夢中讀到這兩部劃時代的巨著!

最後,本人在此特地聲明:

本人樂觀開朗,身體健康,無任何使我困擾之慢性病或心理疾病,故絕不可能做出任何看似自殺之行為。

本人從無睡眠困擾,故不需服用安眠藥。

本人不酗酒亦不吸毒,也絕不會接近下列地點:
1. 開放性水域
2. 無救生員之游泳池
3. 有高壓、危險氣體,或密閉式未經抽氣處理之地下室、蓄水池、水桶等
4. 無安全護欄之任何高處
5. 任何施工地點(拆政府除外),包括製作消波塊之工地
6. 任何以上未提及但為一般人正常不會前往之地點

本人恪遵下列事項:
1. 車輛上路前會檢查煞車部件、油門線等,並會在加油前關閉車輛電源與行動電話。
2. 絕不擅搶黃燈、闖紅燈。
3. 乘坐任何軌道類交通工具一定退到警戒線後一步以上,直到車輛停妥。
4. 騎乘機車必戴安全帽;乘車必繫安全帶。
5. 絕不接近任何會放射對人體有立即危害的輻射之場所(如核電廠)或設備。
6. 颱風天不登山、不觀浪。

本人將盡可能注意電器、瓦斯、火源之使用。

本人居住之房屋均使用符合法規之電路電線,絕無電線走火之可能;也絕未在家中放置過量可燃性氣體或液體。浴室中除該有之照明外,不放置任何電器用品,並在睡覺前關閉除電燈、冰箱、電扇外之所有電器開關。

本人絕不會與隨機的不明人士起衝突,並盡可能保護自我人身安全。

所以若網友在看完此聲明之後,近期或將來發現此帳號不再上線,請幫我討回公道,謝謝。

本文原刊登於 The Sky of Gene

The post 【GENE思書軒】死了一個研究生以後,道出了學術倫理 appeared first on PanSci 泛科學.


為何基因改造人類很母湯?實驗設計還不如研究生——賀建奎基因編輯嬰兒事件(上)

$
0
0

後世的科學史家回顧公元 2018 年時,一定不會忽視 11 月底這件事:
「中國科學家賀建奎創造的基因改造人誕生」。

賀建奎是用 youtube 影片公佈結果,這種方式也值得記上一筆啊。圖/取自 超訊

賀建奎的作為公諸於世以後,震撼世界,從中國國內到國外,全世界的同行都在痛罵;為什麼呢?在此之前的爭議性研究,修改人類胚胎的 DNA 就已經夠令人非議的了;但賀建奎卻直接讓基因改造後的胚胎在母體受孕,懷胎後產下 2 位嬰兒。依據目前技術,辦到這件事的難度不大,卻由於各種自律與明文規範而受到阻止。

基改嬰兒誕生的情形,全世界一開始都不是很清楚,消息像擠牙膏般一點一滴流出,直至 2 個多月後的現在仍有不少疑問。不過隨著愈來愈多內情問世,大眾的創意都被賀建奎激發,從痛罵升級為花式痛罵;但同行們到底在罵什麼,賀建奎真的那麼罪大惡極嗎?

若你也有在關注,那你可能看過持續追蹤事件進展的博士生 北歐心科學,他對此事的觀點更是淺顯直白:「賀建奎的品格及科學能力都低下,是沽名釣譽的垃圾」。就讓我們來一起看看賀建奎到底做了什麼事吧。

【更新】【基因改造嬰兒事件】【當事人出現了】#2018人類基因組編輯峰會 #人神共憤…

北歐心科學 NordicHearts 發佈於 2018年11月28日 星期三

讓基因被修改的生殖細胞受孕,母湯!

賀建奎改造人類的 DNA,為什麼讓科學家如此崩潰呢?因為他改造了生殖細胞的基因!

人體的細胞可以區分為體細胞 (somatic cell) 與生殖細胞 (germ cell) 兩種,「體細胞」像是血球、皮膚、腸道,即使基因改變也不會遺傳給後代,影響有限;「生殖細胞」則是卵、精,上頭的遺傳物質一旦改變就會遺傳給後代,加入人類族群的基因庫。

目前改變人類體細胞的 DNA 在研究上可以接受,臨床上更是某些病人的一線生機;但生殖細胞就有爭議了,若是讓改造後的生殖細胞受孕,繁衍成為人類,則是萬萬不可。胚胎的基因一旦被人為改變,此人不但將一輩子都帶著此遺傳變異,且這個人為的遺傳變異也將有機會代代傳承,造成長期的影響1

賀建奎在香港公佈改造人的基因定序結果,令人震驚的歷史時刻。圖/取自 北歐心科學

大部分同行都認為賀建奎的人類實驗相當拙劣,簡直是把真人當老鼠在玩,毫無責任感。然而,更要緊的並不是賀建奎的操作粗糙或精巧,而是像這篇文章標題所表述的:「不是會不會,而是該不該? (ask whether, not how)」,這件事情的關鍵在於,目前不論用任何方式製造基因被改造(或編輯)的小孩,都是不能接受的2

移除人體正常需求的免疫基因,就能免疫愛滋?

就算實驗做的再好,現階段創造基改嬰兒也是大錯特錯,何況賀建奎的實驗做的令人搖頭,想幫他找藉口都很難。他一系列實驗用簡單一句話就能說明:「毫無演化常識之下,對自然的拙劣模仿」。

賀建奎宣稱,之所以對人基因改造,目的是創造不會感染愛滋病的人。造成愛滋病的病原是人類免疫缺乏病毒(全名 human immunodeficiency virus,簡稱 HIV,本文之後直接稱作愛滋病毒),他認為:病毒要透過 CCR5 基因製造的蛋白質感染細胞,那麼就把這個基因直接消滅掉,不就不會感染愛滋病了嗎?他甚至稱其為「愛滋疫苗」。

好像很有道理……等等!這根本是以直線反推式的模式在思考。

 CCR5 其實還是人體正常需求的免疫基因,把一個完全健康的人,移除其中一個正常的基因,只為了預防未來可能會遇到的疾病?而且,還不見得真的能夠預防,這邏輯就像:為了避免腦殘,讓我們先把腦袋拔掉吧一樣。

正常的 CCR5 蛋白質是個穿膜的結構。更多資訊可以參考《基因編輯嬰兒 — 所以 CCR5 到底長怎樣?》

抵抗愛滋病的天然基因變異-CCR5-Δ32

CCR5 基因的蛋白質產物是細胞膜上的受器,有 352 個氨基酸,但有少部分的人沒這麼完整。過去研究發現,某些歐洲族群中有 10% 的人配備一個小眾的遺傳變異,稱作「CCR5-Δ32」(唸作 CCR5 delta 32),所以機率上該族群中有 1% 的人,2 個對偶基因都是 CCR5-Δ32,而這類型的人天生不容易感染愛滋病毒3

CCR5 基因如果出現 Δ32 變異,就會少掉中間 32 個鹼基對,使得蛋白質產物只剩下原本的一半,無法行使正常功能,達到阻止愛滋病毒感染的效果。若假如 2 個對偶基因中只有一個是 Δ32,另一個不是也沒效果,一定要 2 個都是 Δ32 才可以。目前已經有人利用此一原理,發展對抗愛滋病的基因療法。

然而,這是只考慮 CCR5 的狀況,有些款式的愛滋病毒即使沒有 CCR5,還可以利用另一個受器 CXCR4 入侵,也就是說,就算一個人的 CCR5 失去作用,也沒辦法 100% 對愛滋病免疫。(各位讀者覺得賀建奎是不知道,或是假裝忘記 CXCR4 呢?)

CRISPR 技術濫用,對自然拙劣的模仿

CCR5-Δ32 是天然存在的遺傳變異,賀建奎採取當今流行的 CRISPR-Cas9 改變基因序列,過程卻是「對自然拙劣的模仿」。CRISPR 基因改造技術,原理是人為設計一段序列,與基因組上的目標對應,導引 Cas9 蛋白質到達目標搞破壞,再讓細胞本身的修復機制把斷裂的 DNA 修理好4

可用於基因編輯的方法,CRISPR 是其中一種。這些方法都可以切斷基因組的雙股 DNA,再直接修復成跟本來不太一樣(左下),或是插入給予的外源 DNA 序列(右下),達到改變 DNA 序列的目的。圖/取自 ref 4

CRISPR 基改自從 2012 年底問世以來已經改版多次,現在已更加方便與精準,不過大致上仍可以分為兩種策略。一種是在 Cas9 作用的同時,也給予一段 DNA 序列,讓目標序列被切斷以後,將人為給予的片段塞進基因組,這種基因改造較為精準,但是比較困難,成功機率較低。

而比較容易,成功機率較高的作法,則是直接破壞目標;這也是賀建奎選擇的方案。他把 Cas9 攻擊的目標設計在 Δ32 的位置,希望能人為製造 CCR5-Δ32。坦白說,我認為賀建奎好像搞不太通原理,不知道這樣實驗設計的意義是什麼?

即使是按照賀建奎「沒有 CCR5 就不會感染愛滋病」的設定,也只要把 CCR5 基因直接消滅即可,他可以把 Cas9 攻擊的位置,設計在基因編碼序列的前端,或是啟動子 (promoter) 上,降低基改 CCR5 製造出殘廢蛋白質的機率;也可以把攻擊位置擺在基因外面兩端,直接用外加的 CCR5-Δ32 換掉原本的 CCR5

但是他的想法似乎是:天然存在的是 CCR5-Δ32,我就是要山寨一個一模一樣的出來!

圖中共有 5 個序列,最上面是一般的 CCR5,第二個是改版 CCR5-Δ32,兩者都是天然的存在。下面 3 個分別是賀建奎創造的 2 位基改嬰兒,露露與娜娜的基因。 圖/取自麻薩諸塞大學醫學院 Sean Ryder 的推特

實驗結果卻是失敗的。賀建奎選擇的方法,本來對序列的改造就不會那麼精準,而根據他自己公佈的結果(假如是真的),他創造了和 CCR5-Δ32 乍看很像,但是完全不一樣的多種突變。

正常的體染色體都是成雙成對,CCR5 基因在體染色體上,所以一個人應該會有 2 個 CCR5 基因。其中一位基因改造人露露,一個 CCR5 完全沒有改變,另一個對偶基因的中間少掉 15 個鹼基對,因此應該仍能製造蛋白質,只是中間少掉 5 個氨基酸。可以肯定,她的遺傳組合無法抵抗愛滋病毒,算是實驗失敗,然而,基因改造過但實驗失敗的胚胎,卻還是受孕並出生成為露露,一位真真實實的人類。

另一位基因改造人娜娜,他的 2 個 CCR5 都被改變,但改法卻不一樣。一個 CCR5 在中間少掉 4 個鹼基對,另一個卻多出 1 個,使得她不但沒有正常的 CCR5,還會製造 2 種新的突變蛋白質,影響未知。她可能對某些愛滋病毒免疫,但是如前所述,她仍無法抵抗所有愛滋病毒,還面臨著未知的遺傳風險。

現在回頭來看,「賀建奎的品格及科學能力都低下,是沽名釣譽的垃圾」指控是否名符其實呢?

賀建奎的紙老虎被戳穿後,報導就出現這種角度看起來比較陰險的照片。圖/取自 Nature 新聞〈First CRISPR babies: six questions that remain

如果你是科學家,知道這件事情的嚴重性,那你可能要比一般人更嚴厲譴責賀建奎的行為。引用《中國基因改造人,為什麼科學家應該堅決反對?》文中所說:

「社會大眾根本分不清楚什麼 DNA 還是基因改造,假如放任如賀建奎之流的野心家胡亂實驗,遲早要出大問題,到時候大眾對生物研究將充滿疑慮與恐懼,只會一概排斥與禁止,對科學發展造成很糟糕的影響」。

接下來讓我們來更仔細的了解什麼是 CRISPR ,以及繼續討論「改造基因預防愛滋,是否搞錯了些什麼? 」吧!

延伸閱讀

參考文獻

  1. An ‘epic scientific misadventure’: NIH head Francis Collins ponders fallout from CRISPR baby study
  2. Human genome editing: ask whether, not how
  3. HIV Resistant Mutation(本文作者雖然只是高中生,不過把 CCR5 基因與 AIDS 的關係整理的非常清楚)
  4. The CRISPR tool kit for genome editing and beyond(類似的回顧論文很多,隨便選一篇最近的)

本文亦刊載於作者部落格《盲眼的尼安德塔石匠》暨其 facebook 同名專頁

The post 為何基因改造人類很母湯?實驗設計還不如研究生——賀建奎基因編輯嬰兒事件(上) appeared first on PanSci 泛科學.

改造基因預防愛滋,是否搞錯了些什麼?——賀建奎基因編輯嬰兒事件(下)

$
0
0

CRISPR 到底是基因編輯,還是基因改造?

我們趁機更仔細地來了解 CRISPR 到底是什麼?有些人指稱賀建奎對胚胎做的是「基因編輯」,而「不是基因改造」,很明白這是錯的。你可以用 「為什麼用基因編輯預防愛滋,是很糟的主意?」稱呼這些實驗是基因編輯,但它們當然也都是基因改造。

這種認知似乎來自台灣某些人討論農業與法律時的用語,認為基因編輯意思是「不加入外源基因」。OMG!也許有些法律條文這樣定義,卻也讓大家產生了誤解。姑且不論我個人的認知,讓我們客觀的去討論編輯這個名詞,編輯的英文是「edit/editing」,各位讀者可以搜尋「genome editing」、「gene editing」、「DNA editing」等關鍵字,瞭解「編輯」一詞在國際上,這幾年來怎麼定義與使用。

例如這篇 2018 年的 review〈The CRISPR tool kit for genome editing and beyond〉,讀到第三段大概就能理解基因編輯簡單的發展歷史,以及國際上對「編輯」的定義1

我的認知中,用分子生物學的方式,人為改變遺傳序列,都算是廣義的基因改造 (modification)。近年 TALEN、Zinc finger,以及大家最熟悉的 CRISPR 問世以後,能夠比較精確地改變特定位置的 DNA 序列,所以又被稱作基因編輯 (editing),聽起來比基因改造厲害;相對地,無法針對特定目標的基因改造,例如用轉座子或病毒,攜帶 DNA 片段插進基因組,就不適合叫作基因編輯。

如果 CRISPR 只能改變原本的 DNA 序列,不能送進外源基因,它怎麼可能這麼萬用?如上文提及,CRISPR 有兩種改造策略,一種是直接改變,另一種是插入外來序列。一個很簡單的概念,在各國大量文字記錄中,一般提到 CRISPR,不管哪種作法,都是以編輯描述。假如基因編輯的定義限制是不能插入外來基因,現已發表的眾多論文、新聞都要更正用詞,或是全世界各科學家要召集會議,重新定義了。

而這次各界之所以使用「基因編輯」描述基改寶寶事件,主因是由於賀建奎以 CRISPR 改造基因,和有沒有外源基因卻是一點關係都沒有。更別提極端的觀點:加州大學戴維斯分校的 Paul Knoepfler 在 Nature 森77的投書,賀建奎對胚胎的基因改造根本不算是精準修改,沒資格使用基因編輯之名2 (強者我朋友 os:「這個人好無聊啊,別人都在擔心 impact,他在擔心用詞」)。

名詞的定義與內涵會不斷改變,但是至少在最近幾年,基因編輯都不等於改造後沒有外源基因。法律用詞是一回事,而科學界的常用內涵則是另一個領域,希望看到本文的讀者,可以更加明白 CRISPR 基因改造的概念。

不過,與賀建奎帶來的負面影響相比,他的行為叫作基因改造或是基因編輯真的只是小事。大家都沒錯,比碩士生還不如的賀建奎才是錯的!

改造人類基因預防傳染病?毫無演化常識

改造生殖細胞,即使不能做,但不是不能討論。比方說,技術進步到一個境界以後,能不能修改胚胎基因,「治癒」病因明確的遺傳疾病呢?這是可以談論,也是遺傳學家遲早會面臨的問題。

但是賀建奎不但做了還做失敗,這個人最天才的就是,既使隨便找個名目做人體實驗,他卻不選遺傳疾病,而是選擇傳染病,甚至美其名為「愛滋疫苗」,嚇死寶寶了!

防治愛滋。圖/取自 123RF

賀建奎似乎真的不懂愛滋、不懂疫苗,也毫無演化常識。我們基因改造抗病蟲害的農產品與動物,多數是要用來吃或實際上的使用,長大就殺來吃了。(神隱少女的台詞默默出現)。

但用在人身上就很不同,以現在常態來看,大多數的人都可以活到七、八十歲,但病原體在轉瞬之間就能迅速演化。

同一款殺蟲劑使用幾年以後,可能就被害蟲適應了;就算人類出生時不會被感染,1、20 年後呢?一個人如果活到 70 歲,恐怕不到 30 歲時,出生時的基因改造已經被不斷突變的病原體破解了。這是為什麼體細胞的基因療法很有價值,生殖細胞不適合的一個原因。

網路上有替賀建奎辯護的人,找來一大堆論文、資料,把他的實驗設計吹的天花亂墜,但事實卻是,從實驗開始的設計一直到失敗的結果看來,除了花了很多錢以外,賀建奎基因改造的結果,大多數同領域的碩士生也都辦得到。

跟病毒比突變,這個人一定瘋了啊!圖/取自 Science〈Extremely High Mutation Rate of a Hammerhead Viroid

至於 CCR5 基因被改的慘不忍睹的露露與娜娜,還有一招詭辯是,她們那些突變其實不是全新的,之前有論文報告過,有自然出生的人 CCR5 基因也配備那些突變,所以那都有天然存在,不會有危害。

要騙過敵人,就得先騙過自己人?要替毫無演化常識的人護航,可能得是毫無演化常識的人才能辦到。人類基因組上任何一個位置都能突變,但是很多地方一突變就活不下去,還有許多位置會影響生存與繁衍的機率。以配備一對 CCR5-Δ32,完全沒有原版 CCR5 基因的人來說,儘管能防禦某些愛滋病毒,要是感染西尼羅病毒、登革熱、黃熱病、流感病毒等疾病,卻會面臨更高風險3

基因改造,就算沒有脫靶,非常精準,影響也是牽一髮而動全身。有生醫實驗經驗的人,即使沒學過演化,也應該知道有些突變的效果是條件性 (conditional),一般狀況下沒有影響,特定狀況下才會發生,例如缺少某個基因,常溫下沒事,高溫逆境下卻會死掉。也許某個人確實配備某一突變,那個人平時健康好像也沒什麼問題,這卻實在不該作為亂改基因的藉口。

基因改造人,為何選在中國誕生?

科學研究無法脫離社會脈絡,賀建奎能成功讓基因改造人誕生,與中國獨特的社會狀況或許有些相關。

賀建奎是在中國本土讀的大學,後來成為美國名校萊斯大學的博士,典型前途大好的年輕海龜。他和萊斯大學的指導教授 Michael Deem 關係應該很不錯,兩位沒有執行過任何臨床計劃的博士,一同成為人類基因改造計劃的合夥人,有酒食先生饌,多麼溫馨的師生美談啊4

萊斯大學一對師生 Michael Deem 與賀建奎,為中美合作史立下特殊的典範。圖/取自 ref 4

美國不能做的壞事,就到中國做!改造人露露與娜娜的降世並不簡單,偽造文書只是小事,張羅實驗經費、設備、材料,有金主應該也不是太困難,關鍵還是要找到精子、卵子,以及子宮。賀建奎在 2017 年 5 月聯繫北京的愛滋病公益組織「白樺林」,找到一批夫妻,男方是愛滋感染者,女方沒有感染,卻有生育障礙,作為他的新創事業孵化器5,6

凡事都要代價。一對夫妻,男方提供精子、女方提供卵子,還要貢獻子宮懷胎十月,獲得被基因改造過,前途未卜的寶寶,付出這麼多能得到多少報酬?答案是,就只有改造人寶寶,還要按時回診檢查。

合約中提到 28 萬人民幣這個價碼(約 126 萬新台幣),我有朋友直覺反應是「竟然這種賤價就把小孩賣掉」,可惜誤會了。這 28 萬是幫夫妻做基因改造、試管嬰兒,再加上生小孩,評估的帳面醫療費用,父母實際上一毛錢都拿不到,中途要是退出或發生意外,還要退錢。這麼糟糕的條件,不但不能發大財,風險還很高,為什麼報名還那麼踴躍7

合約說明。圖/取自 ref 7

賀建奎科學專業不行,但是卻很有規劃,他充分運用中國法律、社會制度、愛滋患者的弱點:「在中國,愛滋病患者或家庭不允許做試管嬰兒手術,這些患者通常要去泰國;現在可以免費,她們很想嘗試」(所以賀建奎其實違反了不少中國法律)。還記得前文提到,實驗失敗卻仍然誕生的改造人露露嗎?賀建奎宣稱是露露的父母希望她出生,或許不是謊言,但是真相……

悲劇是這麼上演的。鬧劇是這麼上演的。

科學界除了自律以外,只能期盼歲月靜好,現世安穩?

賀建奎的脫序演出,令人聯想到科學史上另一件大事:1975 年 2 月的第二次厄西勒瑪會議。當時重組 DNA 的技術全新問世,也帶來潛在的公眾信任危機,一群科學家與記者、律師、作家一同開會討論後,提出將實驗風險分級的四級管制。科學家成功展現自律,也贏得研究的自由8

CRISPR-Cas9 基因改造技術問世以來,學界與公眾的討論與擔憂,和 1970 年代頗有幾分神似。和當初不同的是,當年一群美國人關起門來吵出結論,大家照著遵守就能搞定大部分問題。如今學術界更加國際化,做壞事不但可以選擇管制鬆散的地點,出事還有撤退方案,以前做壞事會被封殺,現在卻能轉進到新的地方繼續當大師。

例如賀建奎雖然在中國執行計劃,卻明顯接受美國來的美援,甚至還有美國人前指導教授的參與,在美國不能做、不敢做的,通通改到中國實現(儘管在中國也是違法)。對於這種跨國犯規,不只少數單位,甚至不只一個國家面臨考驗,中國政府至今的回應還算公道,已經將賀建奎自任職的南方科技大學開除,並持續調查9

然而,賀建奎起了頭,而且昭告天下,中國社會有龐大的生小孩需求,可以讓有心人利用,這會誘惑多少人鋌而走險?賀建奎雖然實驗本身做得亂七八糟,還算有個樣子,他的跟風者卻不一定。用 CRISPR 改造基因非常容易,就算技術、知識很差的人也不難自行操作,假如這種人又不缺胚胎來源與受孕的母體,如此將誕生多少基因編輯成面目全非的寶寶?

事情就這樣發生了,我們該怎麼面對?當科技脫離道德,在一個沒有自我約束的世界中,賀建奎之流何時將二度降臨?

生物科技與遺傳學的前途也許仍一片光明,過去每次危機也順利度過,希望未來也是如此,否則,也只能願使歲月靜好,現世安穩了。

延伸閱讀

參考文獻

  1. The CRISPR tool kit for genome editing and beyond(類似的回顧論文很多,隨便選一篇最近的)
  2. Gene editing: sloppy definitions mislead
  3. Baby gene edits could affect a range of traits
  4. Rice University investigates professor’s involvement in genomic editing of human embryos
  5. 內地艾滋公益團體“白樺林”為賀建奎實驗組織薦50人 倫理委員會和倫理審批仍然是謎
  6. 艾滋病公益组织“白桦林”: 曾被“吹风”两女婴将出生 (白樺林負責人訪問,非常值得一讀)
  7. 基因编辑婴儿同意书曝光:感染艾滋和脱靶均不负责
  8. Human genome editing: ask whether, not how
  9. CRISPR-baby scientist fired by university

本文亦刊載於作者部落格《盲眼的尼安德塔石匠》暨其 facebook 同名專頁

The post 改造基因預防愛滋,是否搞錯了些什麼?——賀建奎基因編輯嬰兒事件(下) appeared first on PanSci 泛科學.

把手伸進大型強子對撞機會怎樣?──《然後你就死了》

$
0
0

一九七八年,俄羅斯科學家阿納托利.布戈爾斯基(Anatoli Bugorski)在視察俄羅斯最強的粒子加速器(能把亞原子粒子加速到接近光速的機器)「U–70」時,遭主粒子束打中後腦勺,並從鼻子穿出。他不覺得疼痛,只表示看到「宛如上千個太陽的閃光。」醫生速速把他送去醫院檢查,以為他會死於輻射中毒。不過,除了臉部癱瘓、偶爾癲癇、輕微輻射病及頭上有個小洞之外,布戈爾斯基並無大礙,繼續完成博士學位。

大型強子對撞機。圖/flickr

那強百倍的大型強子對撞機可以嗎?

這是不是表示,你可以把手放進歐洲新的大型強子對撞機(Large Hadron Collider)?你會不會得到一個挺酷的傷疤,除此之外毫髮無傷?不。你和你的手都不會這麼幸運,畢竟俄羅斯 U–70 加速器的威力還不到大型強子對撞機的百分之一。

大型強子對撞機是世上最強大的粒子對撞機,可把在十七哩(二十七公里)圓型隧道內的質子,加速到 0.99999999 c(時速僅比光速少七哩),並在世上最大的撞擊大賽中讓它們相撞。這撞擊威力相當強大,曾引發小社群強烈反彈,擔心會產生足以吞噬地球的黑洞。

大型強子對撞機可把質子加速至0.99999999 c(時速僅比光速少七哩)。它們相撞的撞擊威力相當強大,曾引發小社群強烈反彈,擔心會產生足以吞噬地球的黑洞。圖/pixabay

這質子束是由一千億個質子構成,若加速到接近光速,會帶有巨大能量,相當於四百噸的列車以時速百哩前進。

質子束的能量很強,可在一毫秒內在銅中鑽一百呎(約三十公尺)深。正因如此,多數加速器都指向地底,以免故障時質子束射向城市,造成傷亡。

震破耳膜的巨響──電子束的第一波衝擊

這樣你該明白,為什麼不能把手伸進質子束了吧?但假設你沒看見警告標誌,仍然把手伸進去。那麼,第一個會出的問題是什麼?你的耳朵。

在大型強子對撞機中,碳纖維骨架引導質子束的前進。如果質子束偏離,會撞擊到碳纖維,這聲音聽起來就像你站在演唱會的喇叭之前那麼大聲。之後,當科學家做完實驗,這質子束的能量就會被扔進當作質子阱(proton trap)的石墨塊,聽起來像是兩百磅(九十一公斤)的黃色炸藥(TNT)爆炸,足以震破耳膜。

如果質子束偏離,會撞擊到旁邊的碳纖維骨架,而你的耳朵就好像站在演唱會的喇叭之前。當實驗結束,這質子束的能量就會被扔進當作質子阱(proton trap)的石墨塊,聽起來像是兩百磅(九十一公斤)的黃色炸藥(TNT)爆炸,足以震破耳膜。圖/pixabay

因此,你得戴耳塞。但說真的,耳膜震破是最不嚴重的問題。更大的問題在於質子束的力量。

手一動就切兩半──電子束的第二波衝擊

質子會毫無阻礙地通過你的手。質子束很小,寬度只和鉛筆的鉛芯差不多,且移動速度之快,你根本不會覺得痛。質子束很可能錯過你的骨頭,你的手或許能繼續正常運作,但只有手掌在非常非常靜止的時候是如此。

U–70 俄羅斯反應器不僅力量比大型強子對撞機小得多,而且只打出一發,因此布戈爾斯基頭上只有一個洞。大型強子對撞機比較像質子機關槍,在兩秒內發射將近三千發。如果你在第一發時把手抽離,質子束就會把你的手切成兩半。

萬別這麼做

U–70 俄羅斯反應器只打出一發,因此布戈爾斯基頭上只有一個洞。大型強子對撞機比較像質子機關槍,在兩秒內發射將近三千發。如果你在第一發時把手抽離,質子束就會把你的手切成兩半。圖/pixabay

輻射中毒而死──電子束的第三波衝擊

質子穿過你(但願是)靜止的手時,還會發生另一個更嚴重的問題。移動得這麼快的粒子必定有強烈的輻射。即使你離質子束好幾公尺,得到的輻射量還是會和照完整的胸腔 X 光一樣。

不過,如果質子束打到你,你究竟會得到多少輻射卻很難說。質子束本身帶有極大量的輻射,殺死你還綽綽有餘,不過大部分的輻射會錯過你。這是因為,雖然你認為你的手是靜止的,但從原子層次來看,其實是很大的空間。

如果你手上的一個原子放大成足球場的規模,那麼原子核就是在五十碼處的一粒彈珠。由於朝你發射的輻射子彈也相當小,多數都會錯過,因此饒了你一命,你不會馬上死。可惜的是,雖然大部分會錯過,但你可能被剛好夠多的輻射量擊中,於是緩慢而痛苦地死去。

質子束本身帶有極大量的輻射,殺死你還綽綽有餘,不過大部分的輻射會錯過你。可惜的是,雖然大部分會錯過,但你可能被剛好夠多的輻射量擊中,於是緩慢而痛苦地死去。圖/pixabay

即使 U–70 加速器不到大型強子碰撞機力量的百分之一,就差點讓布戈爾斯基死於輻射中毒。有鑑於此,我們敢打包票,大型強子碰撞機的質子束必定會奪去你的性命。質子束打到你手部時所產生的粒子,會以至少十西弗的輻射毒害你全身,而你的經歷會像一九九九年日本東海村核燃料製備場的意外中,兩名死亡的工作人員一樣。

巨量輻射讓你怎麼死?

大內久與篠原理人在製造小批量的核燃料時,因配方計算錯誤,導致混合物發生臨界事故。即使是接觸到致命的輻射量,受害者也不會立刻感到不適。症狀可能要經過幾個小時才會浮現。但是暴露在極端大量的輻射量時(例如你、大內久與篠原理人),症狀卻會馬上出現。

等到質子束穿過你的手,你眼前會馬上出現藍光,這是因為輻射通過你眼球液體的速度比光速還快(光速在水中的速度,比在真空慢三○%),並產生看起來是藍色的電磁波,稱為「契忍可夫輻射」(Cherenkov radiation)。大內久與篠原理人都說看見房間變成藍色,然而安全攝影機卻未顯示任何顏色改變。

質子束穿過你的手,你眼前會馬上出現藍光,稱為「契忍可夫輻射」(Cherenkov radiation)。 圖/wikimedia

質子束的能量會讓你變熱,因此你除了覺得房間顏色變藍之外,也會感覺變得很熱。你也會馬上想吐,因為輻射攻擊胃壁。你的皮膚則嚴重灼傷,此外還呼吸困難,可能失去意識。

你的白血球數量會降到趨近零,免疫系統無法發揮作用,內臟慢慢受損。醫生能治療你的症狀,卻無法挽回遭到輻射毒害的器官。你會在四到八週內死亡,確切時間取決於你所接收到的輻射量及內臟損壞惡化的速度。

不過,你手上的洞會很小,遲早會癒合,只留下小小的傷疤。

 

 

本文摘自《然後你就死了:被隕石擊中、被鯨魚吃掉、被磁鐵吸住等45種離奇死法的科學詳解》,2018 年 5 月,臉譜出版。

The post 把手伸進大型強子對撞機會怎樣?──《然後你就死了》 appeared first on PanSci 泛科學.

時空洪流中,一些可能有用的旅行資訊── 《我們都是時間旅人》導讀

$
0
0
  • 卜宏毅(加拿大圓周理論物理研究所博士後研究員)

迷人的時間旅行

我們都是時間旅人?我們已經可以時間旅行了?!我們都對哆啦 A 夢的時光機不陌生,但時間旅行與時間機器的這個想法,原來是在上個世紀英國作家威爾斯(H. G. Wells)的科幻作品中才首次露面。「時間旅行」確實是個引人入勝的概念,光是提到這個名字,每個人心中或許都浮現出自己的故事與畫面,卻又難以道盡:也許是因為我們總不免懷念過去,也許是後悔某些決定,又也許是對充滿未知變數的未來好奇。或多或少,我們也都想像過如果能時間旅行會是什麼樣的場景。

當然無數的小說與電影,例如:《風雲人物》It’s a wonderful life, 1946、《回到未來》Back to the future, 1985/1989/1990、《接觸未來》(Contact, 1997、《救世主》The one, 2001、《蝴蝶效應》The Butterfly Effect, 2004、《真愛每一天》About Time, 2013、《超時空攔截》Predestination, 2014、《星際效應》Interstellar, 2014,都曾在時間旅行的主題上譜出動人的故事,有些故事甚至能使我們更反思當下生活的點滴。這就是時間與時間旅行的魅力,但同時,我們卻常忘記自己其實是會隨著時間流逝而變化、衰老,不由自主地在時間中旅行──屬於我們自己的時間旅行。

電影《回到未來》的時光車。圖/wikipedia

作者葛雷易克用他個人的品味與廣泛探究,綜合歷史、哲學、文學、科學、文化等不同面向來探討時間旅行這個主題。從第一章開始,作者以時間旅行的始祖開頭,接著娓娓道來和時間相關的想法和概念,包括第四維度、未來學、未來主義(第二章)悖論、黑洞、蛀孔、相對論、同時的相對性、光(第三章)、記憶(第四章)、自由意志、宿命論、決定論(第五章)、熱力學、時間箭頭、熵(第六章)、時間之河、量子力學、量子電動力學、薛丁格的貓、多重世界(第七章)、佛教、永恆、幻象(第八章)、時間膠囊(第九章)、蝴蝶效應、多重宇宙(第十章)、因果論、封閉類時曲線、時序保護猜想(第十一章)、量子引力(第十二章)、非自主記憶、精神時間旅行(第十三章),到最後一章(第十四章)作者提到時間是個殺手,時間旅行是躲避死亡的一種手段,並給出活在當下的忠告。

書中隨意的輕重分配比較像是作者在飽覽時間與時間旅行的相關作品和研究後,思緒與心得恣意奔馳的作品──有時是概念的匆匆一瞥以及在不同章節的跳躍出現,有時是突然大量描述引用小說的劇情;作者這樣的安排或許增加了讀者對書中提到的各個領域理解的困難度,但也確實激發讀者對某些從未耳聞的主題或作品有一探究竟的動機。本書像是一次出航,讓不同背景的讀者在不同的章節中找到共鳴而流連(讀者可以看看是否你對時間旅行的聯想也被納入書中,而作者又是用什麼樣的角度去描述)。本書又或是更像一張地圖或是一袋種子,讓讀者的思緒或好奇心在某個午後發芽。

時間與空間的觀念革新

在開始閱讀本書之前,或許以下額外的物理資訊會對你有所幫助:

時間和空間,像是兩個擁有截然不同特性的東西。在日常生活中,我們可以在空間中相對自在地移動,但在時間中我們只能往前。在十七世紀牛頓的時代,人們認為存在著絕對的時間與空間:它們提供了萬事萬物存在互動的舞台。想像一下,在這樣的絕對時間與空間中,有位在地面上的觀察者 A,和相對於 A 在等速運動的火車裡的另一位觀察者 B。如果觀察者 B 丟出一個球,那麼觀察者 A 將會看到這顆球的速度是火車相對於 A 運動的速度加上 B(相對於火車不動)丟球的速度。

然而,到了十九世紀,人們漸漸注意到時間和空間並非獨立運作,他們以一種巧妙的方式一起合作,讓即使是相對運動速度接近光速的兩位觀察者(例如在地面上的觀察者 A,和相對於 A 在一個接近光速且等速運動的火箭裡的另一位觀察者 B),居然量測到的光速都是一樣的!如果你還記得描述速度概念時我們同時運用到了時間空間的概念(例如:火車的速度是每小時一百公里),意味著時間和空間的建構在不同的座標系統(即是兩位觀察者各自存在的座標系統)並不一樣,使得觀察者 A 與 B 能測量到同樣的光速!甚至對觀察者 A 來說,兩個「同時」發生的事件對觀察者 B 來說並非同時(相對論就是指這樣「相對」的概念)。

一九○五年愛因斯坦提出的狹義相對論即是描述與規範了時間和空間(還有質量)的相對性。因為時間和空間的共同合作,時間和空間也一併稱為時空(spacetime):三維空間加一維時間(而不是指把時間當成空間的四維空間描述)。這就是書中隨處可見的第四維度,第一章提到的時空就像是個「塊體」(block)的結構,以及在第四章中特別提到的光和時空的背景故事。

時空是可以彎曲的。圖/JohnsonMartin @pixabay

理解時空的故事還在繼續。狹義相對論雖然有了時空的概念,但在狹義相對論中所討論的時空,是個處處均勻的「平坦」時空。人們接著發現時空可以彎曲,而且物體在彎曲時空中的表現,就等同於重力對物體的影響。同時,物體本身的存在也造成了時空的彎曲。

一九一五年愛因斯坦提出的廣義相對論即是描述上述的時空彎曲與能量(與質量)的關係。而黑洞(在廣義相對論中被理解成一種時空結構)附近的奇怪性質是最經典的一個例子:黑洞的內部被定義成是光都無法往外逃出的區域,而在黑洞外部,空間在黑洞附近會沿著半徑方向被拉長,而越靠近黑洞時間流逝得越快,而且光線還會被彎曲(黑洞內部的時空結構則又更奇怪了)。因此,的確可能利用時間流逝速率的差別來做時間旅行。如果太空船有機會靠近黑洞,待一陣子再離開的話,太空船裡的人經歷的時間會比沒有靠近黑洞的人要慢許多,就等於是到達了那些沒有靠近黑洞的人的未來(電影《星際效應》裡也有這樣的劇情)。書中的第三章與第十一章簡短提到了這樣的想法。

在提出廣義相對論之後約一百年的今天,我們開車導航所仰賴的全球定位系統(Global Positioning System,其原理是接收在高空至少四個人造衛星送出的訊號,再根據時間差來計算在地表上的位置),就必須要考慮在地表的時間流逝比在人造衛星所在高空的時間流逝要慢的相對論效應(就像是在黑洞附近一樣,只是效應要小許多:GPS 需要考慮到 10-9 秒的時間修正),才能做到精準的定位,這些在書中的第二章也曾提到過。

配備 GPS 讓你開車不迷路。圖/pxhere

時間旅行有可能嗎?

探索廣義相對論所允許與預測的時空結構讓人意外連連。時空不但可以彎曲,還可以旋轉、誕生,甚至有些時空能允許觀察者在不超過光速的情況下,在時空中不停「旅行」,最後卻能回到當初出發的時空點(這樣的奇怪宇宙由第十一章提到的哥德爾[Kurt Godel]所發現)。這樣的時空旅行在時空中呈現一個閉合的曲線,也就是在十一章提到的封閉類時曲線(closed timelike curve;這裡的「類時」[timelike]指的是旅行過程中從時空的每一點到下一點都在光速的限制內)。在這理論下允許的時空雖然吸引人,但我們的宇宙似乎沒有這樣的特性。

另外,根據廣義相對論,時空也可能允許形成一種蛀孔(wormhole)的結構(在第三章與第十一章提到),在時空中的兩個地方建立捷徑。讀者不妨把時空想成蘋果表面,而蛀孔就像是在蘋果上蛀的一個洞。蛀孔的時空結構並不穩定,無法穩定存在到真的有生物可以穿越過去。因此我們特別稱呼可以穿越過去的蛀孔稱為可穿越蛀孔。想像某個先進文明可以自由控制著蛀孔兩端的入口,將一端放在黑洞附近,另外一端放在遠處,根據洞口兩端的時間流逝的不同(之前提過的相對論效應),經過一段時間後,就可以建立起一個洞口兩端連接起穿越過去與未來的時間機器。

然而,假如時間機器與時間旅行真的能實現,那又會如何?雖然到達未來的時間旅行在因果關係上比較沒有問題,但如果是回到過去,就會出現一些讓人頭疼的問題。當歷史已經確定,我們有可能回到過去改變歷史嗎?第三章與第十一章提到的祖父悖論,就是時間旅行中經典的問題:如果回到過去殺害自己的祖父(甚至是殺害自己),你還會存在嗎?

的確有些物理學家認真探討過這種問題,大致上有兩種觀點:第一種是無論你怎麼嘗試,絕對無法成功,甚至你回到過去的所作所為就是造成你出發前的歷史。在這種情況下,歷史只有一個,而且因果律被保存下來。這就是時序保護猜想(第十一章)。雖然這樣解決了時間旅行中因果矛盾的問題,但又衍生出另一個問題:如果回到過去的我們沒有辦法做出或完成某些決定,那麼自由意志在哪裡(第五章)?另一種觀點,是你真的有可能成功殺害過去的自己。這種情況下,自由意志被保存下來,卻又產生了因果矛盾。其中一個解套的方法,就是允許有另一個歷史,但是不同的歷史卻各自存在於不同的世界中。這樣的想法源自於下面要提到的量子力學所提供的另一種觀點。

如果你回到過去殺了祖父,那還會有你的存在嗎?如果你不存在,又怎麼能殺了祖父?圖/pxhere

科學家仍然在奮鬥的難題:時空結構可能更複雜

時間再拉回十九世紀,當相對論為時間與空間帶來新的生命時,人們對分子尺度以下的微觀世界的認識也從發現光量子(光的能量不是連續的,而是一個個可以分開數的「光子」;這樣非連續的本質稱為「量子」)誕生的量子力學而徹底改變。量子力學描述的微觀世界是個充滿魔法的世界:系統的狀態只能允許呈現不連續的物理特性,粒子可以穿牆,也能呈現波的性質,而且對粒子的位置測量的越精確,就越不能確定其運動狀態。

在量子的世界中,粒子性質在被測量前呈現隨時間演化的機率分布,直到測量時粒子性質才被確定下來。人們雖然找到描述量子世界中機率隨時間演化的數學描述,卻對這些描述產生不同的理解與詮釋(儘管這些理解不影響數學公式的運作以及對實驗的預測)。其中一種觀點是沒有被觀測到的結果,其實在另一個世界中被觀測到,而那個世界和我們這個世界彼此各自獨立。這就是在第七章和第十二章提到的多世界詮釋(many-worlds interpretation)。

在相對論與量子力學在各自的領域獲得空前成功的同時,狹義相對論與量子力學結合成了一個新的分支,稱為量子場論。量子場論中最先被推導出來的部分是(第六章提到的)描述電磁作用的量子電動力學。量子場論適當地描述了基本粒子與它們之間交互作用,唯獨重力還未能包含在這個大架構之下。時至今日,物理學家還在努力朝這個方向前進,希望由一個更廣泛的理論來概括廣義相對論和量子力學。這個企圖將重力量子化的理論稱做量子引力。合併量子力學和廣義相對論是一個艱難的工作,甚至物理學家們對考慮量子力學後的黑洞表面(廣義相對論中最經典的時空結構之一)的本質,至今過了四十多年還是各有看法,懸而未解。

無論如何,量子引力將能回答諸如「時空在極小的尺度下是否是不連續?怎麼不連續?」的艱難問題,並帶給我們對時空更加深刻的理解。在發展量子引力理論的過程中,對於時間空間的維度有了新的猜測,時空也許不只是相對論中所考慮的四維,而有更多的維度(十維甚至更多!)。這些可能存在的高維度世界也許共存著我們宇宙之外的平行宇宙(parallel universe),在某些狀況下這些平行宇宙也可能互相影響。這些概念與十二章提到平行宇宙的分類其中幾種相關聯(前面提到的多世界詮釋也是平行宇宙的分類之一)。這些「隱藏」的維度是否真的存在或者只是數學上的概念,是物理學界的大哉問。無論如何,在葛雷易克的穿針引線下,讀者將會在一路上隱隱約約看見這些風景。

更高維度是否真的存在或者只是數學上的概念?圖/geralt @pixabay

熱力學定律能指出時間的方向

最後,我們再來認識一個和時間有關的物理領域:熱力學。熱力學是探討溫度(能量的一種形式)、系統與環境的能量轉移的一門科學,從八○年代開始,為了增加蒸汽機效能的了解而發展。在熱力學中有些過程一旦發生是無法回到之前狀態的(例如將一杯水倒入大海中),稱為不可逆過程。了解不可逆過程的一種看法是觀察系統的微觀狀態的統計性質──在各種可能的微觀系統組合中,系統的狀態會趨於最可能出現的狀態。不同的系統狀態根據不同微觀系統組合的可能程度,擁有不同的「」值。

熱力學中的其中一個定律就是,系統的熵值只會保持不變或是變得越大。後者的陳述描述了不可逆過程,也讓時間有了一個能分辨的方向。就像第六章裡提到的,這讓時光旅行的討論變得更加複雜。

「時間」,我們對它為何那麼熟悉又陌生的可能原因之一是,它有太多的名字:很久很久以前、小時候、當初年輕時、長大後、下一世代、未來……。另一個原因是它也有太多的身分:時間是金錢、是沉澱、是養分、是變化、是河、是箭頭,也是通往永恆的起點(也或許是終點)。書中的最後一章,是我最有共鳴的章節。面對永遠,也許在我們的時間旅行中,都有過這樣的時刻:

Millions long for immortality who don’t know what to do with themselves on a rainy Sunday afternoon.(人們渴望永生,卻又不知道在下雨的周日午後要做什麼。)

──英國小說家蘇珊‧艾耳茲(Susan Ertz)

你最喜歡書中的哪個章節?如果你可以時間旅行,你想要做什麼呢?

The post 時空洪流中,一些可能有用的旅行資訊── 《我們都是時間旅人》導讀 appeared first on PanSci 泛科學.

芬克拜納測驗:我們不該用什麼樣的方式討論「女科學家」?

$
0
0

我們差一點就失去「居禮夫人」了嗎?(誤

在 2018 年 9 月 16 日,教育部召開十二年國教課綱審議委員會審議,大會通過的 108 課綱自然領域草案中,課審委員們決定在關於「科學發展的歷史」主題中,增列「科學史上重要發現的過程,以及不同性別、背景、族群者於其中的貢獻」;因此有課審委員舉例,或許未來我們熟悉的「居禮夫人 (Madame Curie) 」,將在教科書上改稱其全名「瑪麗亞・斯克沃多夫斯卡-居禮 (Maria Skłodowska-Curie) 」。

居禮夫人及其丈夫。圖/wikipedia

此事引發了熱烈討論與迴響,有人害怕那~麼長的名字,會讓人上演《你的名字》,進入一直問一直忘記的無限鬼打牆或者根本就不記得;也有人認為習慣就好。但如果這麼愛改成全名,那就該把各種夫人從《包利夫人》、柴契爾夫人、《了不起的麥瑟爾夫人》和《冰與火之歌:權力遊戲》的卡麗熙……通通都改為全名:

《愛瑪.魯奧》、瑪格麗特.希爾妲.柴契爾、《了不起的米莉安.米菊.梅索》和「風暴降生丹尼莉絲、不焚者、彌林女王、安達爾人,羅伊那人和先民的女王、七國君王、疆域守護者、多斯拉克大草原的卡麗熙、打碎鐐銬者、 龍之母丹妮莉絲·塔格利亞」……

這難道不是矯枉過正嗎!這樣我們之後還要怎麼看冰與火之歌名字唸完都劇終了。

經過此番討論,教育部迅速發表聲明,表示目前尚在討論、還是能夠沿用舊稱,因此「居禮夫人當然還會是居禮夫人我們沒有失去他喔。不過也有許多觀點認為以全名稱呼代表尊重其為獨立個體、而非丈夫的附屬(或者因為「居禮夫人」的名氣較大反而皮耶.居禮成了附屬)、不會跟其他「居禮夫人」搞混、突顯性別貢獻有利於科學發展……等等。波蘭臺北辦事處也Facebook的粉絲專頁上表示:歐洲是以全名瑪麗亞.斯克沃多夫斯卡-居禮稱呼,而非「居禮夫人」;教科書也是用全名來介紹他的事蹟。

雖然樂見這樣的討論發生,但從這個角度往下細想就可以發現到,當談論「女科學家」時,很多常見的敘述似乎都讓人覺得彆扭彆扭的:我們很容易會提到的配偶、的家庭以及如何養育兒女;是第一位達到某某非凡成就的女性,是所有女孩兒好棒棒的榜樣……。

而當對象是「男性科學家」時,為什麼不會發生這樣的情況?我們該如何擺脫如影隨形像鬼魅一樣的「性別差異」?

貝克德爾測驗:如何判斷電影、影集是否有性別差異?

討論科學家之前,讓我們先來聊聊電影、戲劇等影視作品中,性別不平等女性角色常淪為花瓶或輔助角色的情況。有個簡易的指標「貝克德爾測驗 (Bechdel test) 」,可以衡量該作品中女性角色是否具有影響力;也凸顯了影視作品中,常出現性別不平等的現象。

貝克德爾測驗源自於 1985 年漫畫家 Alison Bechdel 發表的一篇報紙連環漫畫《The Rule》中的人物對話,其中一位女性角色說他只看滿足以下條件的電影:

  1. 影片中至少要有兩位女性角色( the movie has to have at least two women in it )。
  2. 他們會互相交談( who talk to each other )。
  3. 且談話的內容與男性無關( about something besides a man )。

於是我們就只有《異形》(Alien, 1979)可以看了。圖/BechdelRule.png    

與性別相關的指標,後續也產生許多有趣的變體,像是:

森真子測驗 (Mako Mori test

電影《環太平洋》雖然因為女性角色互相沒有對話,而無法通過貝克德爾測驗,但其中的角色森真子(賽高!)本身對故事相當重要,因此制定了標準如下的測驗項目:

1.該作品至少有一位女性角色。
2.這個女性角色有自己的故事線。
3.其故事主軸並非支持某個男性角色。

電影:環太平洋。圖/IMDb

性感檯燈測驗(Sexy Lamp Test

當你可以把作品中的女性角色換成一盞性感檯燈,而故事沒有什麼不對勁的地方,那一定是這部作品有點不對勁了。

小美人(藍妹妹)原則(Smurfette Principle

就是我們常見的整部作品裡面只有一個模板化、像左手一樣只是輔助的女性角色。

與LGBT有關的羅素測驗 (The Vito Russo Test

要通過該測驗必需符合以下條件:

1.作品中具有可被識別的同性戀、雙性戀或是跨性別者的角色。
2.這個角色的性格並不是根據他的性傾向或是性別認同來定義。
3.這個角色對故事情節來說至關重要。

當然以上指標都只能當作簡單的參考,讓我們意識到影視作品當中的性別不平等現象,不是有通過測驗的作品就好棒棒,也不用因為一部好的作品沒通過這樣的測驗就需要瘋狂糾結為他辯護。看看y編最喜歡的美劇之一科學大爆炸,劇情最初那男性是聰明科學家女性傻呼呼的設定拿這些測驗一看也真的大爆炸了哈哈哈。

美國影集:生活大爆炸。圖/IMDb

而說到「科學家」大眾大多都會先想到男性,於是在介紹女性科學家時新聞報導便會貼心的提醒一下大家這位是「女科學家」喔……等等,好像哪裡怪怪的?

芬克拜納測驗:雖然是女性無誤,但我要假裝他只是一位科學家

「科學是一個很長的故事,但新聞卻僅在意快門閃過那一瞬間。」

你還記得,新聞報導大多用什麼樣的方式談論「女科學家」嗎?如果你腦中的資料庫查無此筆搜尋,讓我們不隨機抽樣的一起來看看一篇關於 2018 年傑出女科學家獎得主蔡宜芳博士的敘述:

「第 11 屆台灣傑出女科學家獎得主蔡宜芳博士是國際知名的植物營養學家,從事細胞膜蛋白的功能研究,在硝酸鹽轉運蛋白研究領域貢獻卓著,有助舒緩氮肥對環境的危害。蔡宜芳表示,自己非常愛大自然,甚至在逛街時,注意的還是商場展示的植物;研究過程中,她靠著新研究成果帶來的成就感,以及另一半的支持,才能完成夢想,堅持朝科學之路邁進。

蔡博士也積極推動科學人才培育, 2014 年起,她擔任陽明大學生命科學系暨基因體研究所兼任教授,透過紮實的實驗室訓練,已培育多位女性科學家獨當一面,在台灣和美國的大學任職。蔡博士當年考上北一女時的禮物是顯微鏡,這也開啟她對於科學的熱情。因此現場也準備了顯微鏡傳承給北一女的小學妹,鼓勵其勇於追求自我投入科學領域。鼓勵年輕女學子『Follow Your Heart』,享受過程中追求真理的感覺。」

這樣的報導乍看之下似乎蠻勵志的也沒什麼問題,但如果我們直接把這位科學家想成是「男性」呢?是不是就有些地方就變得微妙微妙的?比如說提到「逛街的時候注意的是植物」、「有另一半的支持才能完成夢想」、「她鼓勵年輕女學子勇於追求夢想」……這類的敘述似乎就不會在報導男性科學家時出現?

在新聞報導中,有沒有像貝克德爾測驗這樣簡單的指標,協助我們辨識「對女性科學家性別不平等」的描述呢?

在新聞報導中,有沒有像貝克德爾測驗這樣簡單的指標?圖/maxpixel

2013 年 3 月 5 日科學記者 Christie Aschwanden 在 Double x science 發表一篇名為《芬克拜納測驗 (The Finkbeiner test)》的文章便仿效了貝克德爾測驗的精神,從他的同事 Ann Finkbeiner 寫的一篇關於他如何在撰寫一位關於女性天文學家的報導時「假裝他只是一位天文學家。( I’m going to pretend she’s just an astronomer. )」的文章中,擷取其中的幾個要點作為關於女性科學家報導中有沒有「性別差異」的指標。

其分別為在內容中不要提及:

  1. 他身為一位女性……( The fact that she’s a woman )
  2. 他丈夫的工作( Her husband’s job )
  3. 他對於育兒的相關安排( Her child-care arrangements )
  4. 他如何培育、照顧他的下屬、學生( How she nurtures her underlings )
  5. 他如何對於自己領域內的競爭感到吃驚( How she was taken aback by the competitiveness in her field )
  6. 他扮演著其他女性的榜樣( How she’s such a role model for other women )
  7. 他是「第一位女性……」( How she’s the “first woman to…” )

此指標被稱為「芬克拜納測驗 (Finkbeiner test) 」。而在這篇文章發佈後沒多久, 2013 年 3 月 27 日航太科學家 Yvonne Brill 辭世;與芬克拜納測驗相關的討論,因為《紐約時報》上 Yvonne Brill 的訃聞而火熱了起來。

Yvonne Brill 於 2011 年獲得美國國家科技獎章,其研發的衛星推進系統為業界標準。而的訃聞在《紐約時報》最初發表的版本卻是這樣描述:

「他能做出很棒的酸奶牛肉,他為了跟隨著丈夫而轉換工作,期間並為了養育他的三個孩子而離開了自己的工作長達八年之久。『他是世界上最好的媽媽,』他的兒子馬修這麼說。(She made a mean beef stroganoff , followed her husband from job to job and took eight years off from work to raise three children . “ The world’s best mom. ”  her son Matthew said .) 」

如果之前不認識這位科學家的話,單看這一段好像只得到了他是好媽媽的資訊,這在當時引起了譁然,隨後紐約時報也將報導的第一句改為「他是一位才華橫溢的火箭科學家」。

Yvonne Brill 和 2011 年時任美國總統 Barack Obama
Credit: Photo from White House ceremony courtesy of Ryan K. Morris/National Science & Technology Medals Foundation

不過芬克拜納測驗也不是沒有爭議,有評論認為當新聞報導聚焦在「人」的時候,用其家庭以及個人生活去塑造形象是很尋常的事,反而應該要鼓勵多討論一些關於「男性科學家」的這些私人問題;也有科學家認為在科學社群尚未完全性別平權前,不應排斥強調科學家的女性身分以作為其他人的榜樣。 Ann Finkbeiner 後續也有出面回應這些問題,表示雖然科學家「本人」很重要,但應該聚焦的是他們的研究本身。

另外,畢竟是簡易的指標,跟貝克德爾測驗一樣,就算報導內容都通過也不代表就是完全的性別平等了。指標中並沒有提到的關於形容「女科學家」的外貌,而這其實也時不時會出現在關於女性科學家的報導之中。像是在 2015 年《紐約時報》的一篇關於發現 CRISPR / Cas9 的生物化學家 Jennifer Doudna 的報導中,便在第一段描述了他的身體特徵(身材很高、金髮藍眼),而且還側面的引用他丈夫的話,說他很堅強可以承受很大的壓力。

回到臺灣,我們有時甚至會看到像是〈台灣造山爭論台大博士正妹解謎〉、〈顛覆想像!正妹大玩「核子工程」 讓男人全驚呆〉這種全篇除了知道這是位「正妹科學家」之外,根本讓你搞不清楚到底在做什麼研究的新聞報導。

截圖自蘋果日報

在居禮夫人正名之亂後……

說了那麼多,我們該如何稱呼那位波蘭裔法國籍、同時得過諾貝爾物理獎和化學獎的科學家呢?你會稱呼為「居禮夫人」還是「瑪麗亞.斯克沃多夫斯卡-居禮」?提到「女」科學家,你還得說出誰的科學成就?

核子物理學先驅莉澤.邁特納、定理奠基近代物理學骨幹的數學家埃米.諾特、發現轉位因子推進分子生物學前進的芭芭拉.麥克林托克」、拓展社會認知的人類學家瑪格麗特.米德、撰寫寂靜的春天,提醒世人關注自然的瑞秋.卡森……你知道各知識領域中,那些讓社會更前進的科學家及研究者們的名字嗎?

現今的科學社群對女性(或是少數族裔)或許已不像「關鍵少數」的年代嚴苛,但似乎仍有張玻璃天花板影響女性科學家的發展。這影響似有若無,從碩博士學位、擔任教職人數以及期刊引用被引用數,數據上都可以看到性別有實際的差異。

要在社會、或是科學社群中尋求完全的性別平等還有好長一段路,但起碼在下次看到新聞報導在討論某位「女科學家」的非凡成就時,我們知道應該把重點放在他身為科學家如何帶我們突破知識的邊界,就如同我們談論任何一位科學家一樣。

圖/wikimedia

參考資料

  1. 十二年國教自然科學領域課綱草案。國家教育研究院。
  2. 瑪麗亞·斯克沃多夫斯卡-居禮。維基百科。
  3. 居禮夫人當然還是居禮夫人-教育部澄清說明9月16日課審會之討論。教育部電子報。
  4. 波蘭臺北辦事處-居禮夫人稱呼聲明。 Facebook 專頁。
  5. 有溫度的科學教育:新課綱為何要重新稱呼「居禮夫人」?鳴人堂。
  6. 2016 年有多少讓你有印象的女性角色?從衡量性別標準的貝克德爾測驗談起。娛樂重擊。
  7. Mako Mori test . Wiktionary .
  8. Sexy Lamp Test . Fanlore .
  9. 藍妹妹和黑寡婦的困惑:男人堆裡唯一的女性,就得是蕩婦吗?果殼科技有意思。
  10. This Test Measures How Hollywood Treats LGBT Characters . Time .
  11. 你作品中的女性角色是否能通過這些測試?豆瓣。
  12. 第十一屆「傑出獎」得主:蔡宜芳特聘研究員(中央研究院分子生物學研究所)-簡介。台灣傑出女科學家獎。
  13. What I’m Not Going to Do . The Last Word On Nothing .
  14. Yvonne Brill, a Pioneering Rocket Scientist, Dies at 88. The Nwe York Times .
  15. 台灣造山爭論 台大博士正妹解謎。中國時報。
  16. 顛覆想像!正妹大玩「核子工程」 讓男人全驚呆。中國時報。

The post 芬克拜納測驗:我們不該用什麼樣的方式討論「女科學家」? appeared first on PanSci 泛科學.

想領錢只要刷臉就行?銀行人臉辨識可沒這麼簡單

$
0
0
  • 李蘭萱 (Lan-Xuan Li)/政治大學財務管理研究所碩士生,目前於產業分析研究崗位實習。主要專業領域為計量經濟、金融創新服務、ICT 數位化科技應用等。喜歡桌球,並認為必須結合統計、科技,才可以描繪出未來「以人為中心」的商業模式。

靠臉領錢辦得到嗎?其實科幻場景已很近

不知道大家有沒有遇過一種情況呢?急需用錢時站在 ATM 前準備提款,卻發現自己忘記金融卡密碼了,隨著身後排隊的人群愈來愈多,心也逐漸焦躁不安,與此同時,或許你的腦中會惱怒地想著:

如果可以靠臉領錢那該有多好啊!

這敘述乍看之下彷彿是僅存於科幻電影中的想像,但實際上,隨著科技發展,這種操作已非遙不可及。「只要站在鏡頭前刷臉就能提款轉帳」的未來,其實比想像中還要近。

不想要排隊?那就刷臉吧!圖/wikipedia

想成為識別的特點,要既普遍又獨特

隨著電腦運算效能的演進、行動設備普及化,自動化的「生物識別系統」──尤其是指紋和語音識別,早已在近十年被廣泛使用。不過,即使指紋、語音等生物資訊已逐漸普遍,值得留意的是:除了一般性消費服務的應用之外,銀行、金融業者也嘗試將各種生物識別技術,導入銀行服務應用之中。

比如歐洲銀行業管理局 (European Banking Authority),在 2018 年發布的《EBA Report on the Prudential Risks and Opportunities Arising for Institutions from Fintech》報告中,便提到生物識別技術在「身分識別」的功能上,須具備幾個特點:

  1. 普遍性:確保每個人都有用來識別的特徵。
  2. 獨特性:特徵在個體間有所差異。
  3. 持久性:同個體的該項特徵不會隨時間有太大改變。
  4. 可收集性:與特徵獲取或測量方式的難易度有關;愈難取得則識別效果愈差。
  5. 規避難度:規避難度會影響技術的安全性和可靠性。
  6. 社會接受度:客戶對生物辨識的的接受或抵抗會嚴重影響方法的使用。  

符合這些條件的生物特徵,大致上可以分成指紋、語音、虹膜、臉部等「外部生理特徵」以及「內部生理特徵」,例如靜脈、心跳。其中,又因為指紋辨識具有方便、快速、成本低廉的特性,所以無論是實體銀行和行動銀行都很常見到指紋辨識的應用,或者藉由指紋辨識,來擴大服務情境的內容。

符合身分識別要素的內外部生理特徵。

生物特徵雖然能夠鎖定個人的獨特性,但也並非無所不能。以如今已成熟化的指紋辨識來看,指紋這項生理特徵的應用,也有幾項明顯的侷限性。首先,並非所有人的指紋都能夠被機器識別;其次,指紋的辨識與取得,目前仍必須直接仰賴特定的臨場感應器;再次,感應器上的指紋印痕也具有被有心人士複製的風險。

整體來說,指紋辨識技術仍有可靠性 (reliability) 不足,以及使用臨場設備的限制,因此,除了指紋辨識之外,銀行與金融業者也積極投入其他生物辨識的應用。

遠端身分識別、消費者體驗需求,帶動人臉辨識技術導入服務

衡量生物識別可靠性的指標分為兩類,分別是錯誤接受率 (False Acceptance Rate, FAR) 及錯誤拒絕率 (False Rejection Rate, FRR)

  • 錯誤接受率非法使用者被機器錯誤接受、通過認證的比率。
  • 錯誤拒絕率:合法使用者被機器錯誤拒絕的比率。

這兩個比率太高都會產生負面影響,前者高意味著安全性不佳,後者高則影響使用意願。

同樣在歐洲銀行業管理局 (EBA) 報告中,比較了不同的生物辨識技術,發現到:在一般的情況之下,人臉辨識與語音識別的錯誤接受率 (FAR) 較高,指紋、虹膜和視網膜識別則較低,但確切數據會隨著不同使用目的而變動。正因如此,現在的人臉辨識技術尚未普遍成為銀行金融服務的主要導入技術。

由於安全性的問題,人臉辨識技術尚未普遍成為銀行金融服務的主要導入技術。圖/pixabay

即使如此,仍可以看到部分銀行金融服務業者,比如匯豐銀行、新加坡華僑銀行等,近年開始嘗試將人臉辨識,導入於相關服務中。人臉辨識技術雖然尚未成熟,卻讓各大銀行願意花費昂貴成本和風險引進,倘若我們彙整這些業者的服務論述,大致可歸納為兩點:

  1. 提升安全防護:只有傳統密碼的情況下,一旦客戶的卡片密碼被不肖人士取得,可能就會造成客戶損失。然而若增加人臉辨識系統在 ATM 等設備上作為防護,不僅會使得盜領難度大增,銀行也能夠「即時」獲得警訊,未來在合理的法律規範下,還可以和警方合作,用來打擊犯罪。即時性防護,對於注重安全性的金融機構而言,人臉辨識提供的保護功能,會是最大的投入誘因。
  2. 增加客戶體驗、吸引客群:在網路銀行普及的同時,由於業務上仍有部分限制,實體據點的存在還是有其必要性。因此,透過人臉辨識提供優良的體驗以吸引客戶,對銀行來說會是一項誘因,例如 Pepper 機器人、Vedio Teller Machine、迎賓互動牆等等。這也意味著:銀行業者在因應行動服務等需求的同時,會需要非臨場、遠端臨場的身分識別技術。而在智慧型手機的鏡頭效能不斷增進的趨勢下,人臉在裝置上的映照與投射已成消費者最熟悉的使用習慣之一。

人臉辨識技術導入銀行金融服務案例

人臉辨識技術導入銀行金融服務案例

人臉辨識技術導入銀行金融服務案例

倘若我們觀察現有的案例,可以發現銀行業者對於人臉辨識的應用導入,包括手機銀行登入、臨場的身分識別等。而從消費者使用經驗的層面來看,則可進一步分為兩種類型:

  1. 「主動辨識」:可在辨識目標(消費者)無知覺的情況下運作,常被用來監控特定範圍內的動態目標
  2. 「被動辨識」:需經過辨識目標主動觸發,系統才會開始運作,而由於目標是靜態的,所以受到環境因素干擾的程度會較低,使辨識可靠性提升

但無論何種應用服務(如:登入手機 APP 使用行動銀行,或是在櫃檯協助行員辦理金融服務)對「可靠性」的需求都被視為銀行服務的核心,其中,又以被動辨識中涉及到的線上登入、支付等服務對於系統可靠性的需求最高,因為稍有不慎便可能造成金錢損失,或將個人資料外洩。

  • 註:銀行休息室的主動辨識功能,其需求是截然不同的,休息室使用人臉辨識的目的,是在客戶沒有意識到的情況下提供貼心的接待服務,對銀行來說偶爾辨識錯誤的影響不大,這種情況下主動的人臉辨識反而比較適合。

然而,若就現有的案例來看,目前在銀行服務中,單獨使用人臉辨識作為身份認證的服務仍有限,使用安全性需求高的功能,仍然還是會搭配「密碼」輸入,人臉辨識只作為多重認證的一環。但可以確定的是,未來人臉辨識能否完全取代其他身分認證的方式,甚至成為主流認證方式,辨識的可靠性會是一個很重要的關鍵

人臉辨識導入金融服務的爭議與挑戰

使用人臉辨識革新金融服務的同時,銀行要考量的不僅僅是技術的使用方式、成本等等,還要注意伴隨著創新而來的爭議與挑戰,接下來將分別說明可能遇到的問題。

技術可靠性仍有待提升,且需要有在地特徵的分析模型

人臉辨識錯誤的原因有很多,將影響可靠性。圖/wikimedia

對銀行來說,是否採用人臉辨識技術,或者更進一步決定技術運用的方式及程度,其中最大的關鍵在於可靠性,這些問題包括──究竟人臉辨識系統能不能準確分辨出長相相近的不同用戶?膚色與性別是否會導致辨識錯誤機率提高?

以目前當紅的 Face ID 為例,Apple 坦言雙胞胎和 13 歲以下的兒童用戶,辨識錯誤機率的確較高,並且建議他們使用密碼驗證,坊間也可看到民眾成功騙過系統的案例。學術研究方面,Buolamwini 與 Gebru 在 2018 所發表的「Gender Shades: Intersectional Accuracy Disparities in Commercial Gender Classification」一文中針對 3 款人臉辨識 API 進行測試,結果發現性別和膚色均會對準確度造成影響,可能原因除了膚色和燈光影響資料擷取外,資料收集時的偏誤也會降低人工智慧模型的判斷能力。假如資料中的白人男性偏多,模型對於白人男性的訓練量足夠,會有較佳的辨識能力,而相對的,其他特徵的使用者就比較容易出現誤判。

如果是用於一般的消費性電子產品,目前的人臉辨識技術對於提供用戶良好的使用體驗或許綽綽有餘,然而金融業對於安全的要求極高,在進一步提升技術可靠性之前,人臉辨識技術仍無法全面取代密碼作為主流驗證方式。

臉部特徵作為個人資料,如何兼顧資料安全性

用臉當資料會不會帶來很多問題呢?圖/wikipedia

想要將人臉辨識導入金融服務,那麼生物資訊的蒐集是無法避免的,因此,個資法的規範範圍是否影響技術的使用?這是銀行必須審慎評估的。這也意味著:除了技術層面以外,法律規範也是銀行引進服務前需要思考的。

首先,台灣的個人資料保護法中規定,無論公務機關或非公務機關,如要在未取得當事人同意的情況下蒐集資料,則需要基於執行法定職務或義務等必要情況,並且處理與利用資料同樣只能在法律規範的幾種特例下所使用,例如為了公共利益或是學術研究。

國外的法律規範更嚴謹,歐盟號稱史上最嚴的個資法 GDPR (General Data Protection Regulation) 於 2018 年 5 月 25 日開始實施,適用的範圍相當廣泛,不僅是歐盟境內,只要客戶、員工、供應商、政府機關等和歐盟公民相關就會受到 GDPR 的規範。受保護的資訊囊括了一切個人數據,從基本資料、宗教信仰、政治立場、網路瀏覽紀錄到指紋、虹膜、面部等生物特徵都在範圍內。這些法律上的限制意味著銀行引進人臉辨識前,必須謹慎評估使用情境是否合法,避免在追求便利服務的同時帶來更多額外的風險及成本。

技術不成熟引發的社會爭議

不小心抓錯人了?原來是人臉辨識出了錯。圖/imdb

人臉辨識的運用也引發了敏感的社會爭議。英國倫敦、南威爾斯等幾個地區的警方,自 2017 年開始在一些節慶、比賽或是流量大的十字路口使用人臉辨識系統,系統即時辨認鏡頭前是否出現和警方持有照片一致的面孔,若配對成功則會發出警報。

然而,其結果不盡理想,依據目前的測試結果,警報超過九成都是錯誤的,這讓英國民間的公民自由組織 Big Brother Watch非常不滿,認為這項不準確又昂貴的系統,對於抓捕真正的罪犯幫助有限,反而會造成無辜人民的自由受到侵害。同樣的問題也可能出現在銀行,如果銀行逕自使用人臉辨識系統分辨客戶,而未經過所有出現在鏡頭前的人同意,不論結果是否準確恐怕都難避免爭議。

整體而言,依據歐洲銀行業管理局 (European Banking Authority) 的觀點來看,人臉辨識的技術仍有相對較高的錯誤接受率 (False Acceptance Rate, FAR),換言之,對於銀行金融此種需要有高度可靠性、安全性的服務場域來說,技術仍然未能滿足,因此在目前,人臉辨識仍屬於多重辨識的一種(如搭配密碼、人臉資訊等)。

但相對於虹膜、指紋、靜脈等生物辨識技術來說,人臉辨識擁有較高的遠端臨場特性,也就是使用者可以在非臨場情境中使用銀行金融業者所提供的服務,確實在行動服務普及化趨勢之下,是業者願意投入的主要誘因。此外,倘若相關技術可以取得更多的在地化資料模型,並結合深度學習 (Deep Learning) 等技術,在未來仍可以降低錯誤識別的機率。

不過,其實人臉辨識能否成功導入於銀行金融服務,其最核心的問題仍在於:消費者是否信賴?這個問題所包含的個人資料保護,以及生物資訊第三方使用的正當性,才是這個議題最需要解決的課題。

一個只需要刷臉就可以登入的銀行帳戶,你的想法是甚麼呢?

參考文獻

  • Buolamwini, J., & Gebru, T. (2018). Gender Shades: Intersectional Accuracy Disparities in Commercial Gender Classification. Proceedings of Machine Learning Research 81, (pp. 1-15).
  • EU GDPR. GDPR Key Changes. Retrieved 11 23, 2018, from EU GDPR.ORG: https://eugdpr.org/
  • European Banking Authority. (2018). EBA Report on the Prudential Risks and Opportunities Arising for Institutions from Fintech. European Banking Authority.

The post 想領錢只要刷臉就行?銀行人臉辨識可沒這麼簡單 appeared first on PanSci 泛科學.

非洲豬瘟警報尚未解除!如何從邊境防堵疫情擴散?

$
0
0
  • 採訪、撰文/黃宜稜

非洲豬瘟持續延燒,如果傳入台灣,將造成相關產業至少 2 千億的損失。在旅客出入境頻繁的此時,該如何讓大眾有正確的觀念?防疫單位的人手與應變能力是否充足?將會是全台的一大考驗!

非洲豬瘟v.s一般豬瘟,有何差異呢?

首先,先來了解非洲豬瘟跟一般豬瘟的差別吧。

1921 年非洲豬瘟病毒首次在肯亞被發現,不同於一般豬瘟是由 RNA 病毒所致,非洲豬瘟是 DNA 病毒所引起之惡性豬隻疾病,雖然感染後的症狀跟一般豬瘟相似,都是高熱與全身臟器的出血,但解剖後會發現感染非洲豬瘟的話,豬隻的脾臟會腫大 2~3 倍、腎臟也會有點狀出血,看起來如同火雞蛋。

而其需要特別注意的地方在於,它是具有急性跟高度傳染性的特質,可經由廚餘、節肢動物、動物分泌物或排泄物、車輛及人員夾帶等途徑傳播,且從感染到發病的時間很短(潛伏期只有4~19天)、目前尚無藥物可以預防或治療,致死率極高,幾乎是100%,因此會對各國的養豬產業造成非常大的衝擊。

一般豬瘟是由 RNA 病毒所致,非洲豬瘟是 DNA 病毒所引起之惡性豬隻疾病。圖/pixabay

不過,當時疫情僅限於非洲大陸,與非洲相隔一個地中海的伊比利半島也出現案例,並陸續在中美洲、北歐陸續傳出疫情,但都先後都被撲滅了。

防疫意識薄弱,加速非洲豬瘟擴散

直到 2007 年位於東歐的喬治亞再度爆發疫情,並迅速傳到其他東歐國家,根據研究認為,非洲豬瘟傳播的速度如此之快,可能與 2007 年野豬從喬治亞到車臣的大規模遷徙有關,加上當地對於養豬產業的生物防治意識較薄弱,才造成疫情擴散。

當時聯合國農糧署就發表報告,指出現在需要迫切關注的,就是防止疫情傳到烏克蘭,可惜 2013 年烏克蘭還是傳出疫情,並讓疫情從養殖場走到戶外,2014 年非洲豬瘟再度出現於歐盟「申根區」。2018 年 8 月,中國瀋陽有養豬場確認感染非洲豬瘟,這是東亞地區首次傳出疫情,並在短短 3 個月內傳遍中國 16 省 3 直轄市。

由於中國是全球最大的豬肉生產與供應國,因此消息一出,不只讓全球的疫情雪上加霜,並讓鄰近的台灣如坐針毯,防疫的腳步更是不能鬆懈。

甚至金門海邊都會發現,乘著東北季風飄洋過海的垃圾。圖/金門金沙鎮

防堵非洲豬瘟,從邊境檢疫做起

台灣目前尚未有非洲豬瘟的案例發生,因此現階段最重要的就是做好邊境防疫,讓非洲豬瘟的病毒無法進來台灣!

其實自 2007 年起,為了保護國內生態與防堵國境流行病,台灣就已經禁止攜帶活體動物及其產品、活體植物及生鮮產品、生鮮果實入境,2018 年 8 月中國爆發疫情後,也立刻在機場與港口等地區,針對來自中國的航班做檢查,9 月開始實施處罰,就是為了防堵病毒進入台灣。

為什麼要這麼嚴格?因為台灣是座海島,風險最高的傳播途徑是「旅客攜帶肉品入境」,因此防疫也會特別針對邊境管制,不過從 2018 年 12 月 14 日~2019 年 1 月 31 日這期間,仍然發生 276 建違規事件,防疫觀念仍需要加強宣導。

中國大陸海漂連江豬隻,檢出非洲豬瘟病毒核酸陽性。圖/非洲豬瘟災害應變中心

軟性提醒到易科罰金,旅客登台過三關

為了防疫,目前在海運方面,旅客搭上航班後,船上就會開始廣播,提醒民眾不要攜帶肉類產品入境,經過通關點時,托運行李與手提行李均會經由 X 光機檢查;機場的話,同樣也是無論來自任何地區的旅客,其拖運行李與手提行李都必須經過 X 光機檢查。

不過桃園機場因為人流眾多,托運行李雖然會用 X 光機全面檢查,但手提行李以往只有人力與防疫犬的隨機抽查,抽查率只有 3 成,無形中造成防疫漏洞。因此在 2019 年 1 月 16 日開始,增設三道關卡,來延長作戰線。

為了防疫,托運行李與手提行李均會經由 X 光機檢查。圖/IDuke@wikipedia

第一關:X光機擴大檢查

由航警局派人員於旅客下機出空橋處,針對來自高風險地區(中國大陸、香港、澳門)的旅客進行宣導及手提行李全面檢查,須注意的是,政策開始初期是採用人工檢查,2019 年 2 月 2 日開始則交由 16 台 X 光機,預計加起來每小時可以檢查 4000 人次,防檢局副局長杜文珍表示,根據桃園機場歷年來自這些地區的民眾,每小時大約為 2000~2500 人,應該不會造成民眾阻塞。

第二關:立牌、跑馬燈多管宣導

在證照查驗台前設置大型宣導立牌,查驗台上方也會有 LED 跑馬燈宣導、張貼宣導看板,讓旅客在排隊等候查驗時都能看到宣導訊息,同時證照查驗時夾送宣導單張於護照內,提醒來自高風險地區之旅客。而在這兩關中,民眾若主動通報並交出違法產品,就可以免去罰款,對此杜文珍表示,防疫最重要的不是罰錢,而是藉由宣導,讓全民都有防疫的意識。

第三關:防疫犬邊境把關

就是用 X 光機全面檢查托運行李(無論來自任何地區),爾後來自高風險地區的拖運行李會集中於特定行李轉盤,民眾等候提領行李的時候,還會由檢疫犬加強對託運行李跟手提行李的偵查,若是到第三關才被發現攜帶違法產品,將會處以 20 萬的罰金。

檢疫犬Mini與領犬員。圖/非洲豬瘟災害應變中心

不過非洲豬瘟不是會附著在衣服、包包上面嗎?對此杜文珍表示,機場有鋪設消毒毯,可以減少民眾鞋子上的病菌,但一般來說,病毒要附著於人類身上的機率,其實很低,不過民眾出國還是要注意,現在這種非常時期,千萬別去牧場那些容易有非洲豬瘟病毒的區域參觀。

新規定:未繳罰金拒絕入境!

而以往就算民眾被抓到違規卻沒錢繳罰金的情況,通常還是會先讓他們入境,卻造成後續追蹤困難,對此非洲豬瘟中央災害應變中心表示,如果是國人違規的話,會限期一個月內要繳交罰金,而對於外國遊客,若未繳交罰金就出境,移民署也會有相關紀錄,之後就不得再入境台灣。

不過根據 1 月 25 日晚間成效的最新規定,則改為若拒絕繳納罰款 20 萬將拒絕入境,截至 2 月 1 日為止,已有 9 位來來人士違規攜帶豬肉產品,其中 3 人因未繳 20 萬元未繳,被拒絕入境。

外來人士違規攜帶豬肉產品入境,經裁罰20萬元並繳清後准其入境。圖/非洲豬瘟災害應變中心

最高警戒,漁船靠岸也需檢查

至於港口的部分,2018 年 11 月 10 日發生過一搜中國籍漁船,進入高雄港維修,卻被發現這蒐船的冷凍庫約有 300 公斤的冷凍豬肉,雖然已全數被生存在該船的冷凍庫內,確保不會進入國內,並就船上廚房與相關使用空間進行消毒,雖然最終發現那批肉沒有非洲豬瘟病毒,但仍引起民眾譁然。對此防檢局局長馮海東表示,只要有外來漁船要進入台灣,防疫人員都會去查驗,不會讓有風險的豬肉進入台灣,民眾不必擔心。

疫情防疫,全球有責

豬瘟的防疫,只有台灣努力夠嗎?當然不夠!2018 年 12 月 30 日在金門海邊有海漂豬被檢出非洲豬瘟,讓中央下令「金門地區的豬隻與其屠體 、內臟、生鮮及加工產品禁止輸往臺灣本島及其他離島」兩周,以確認病毒並未擴散,但剛解禁的隔天,2019 年 1 月 17 日又在連江縣東莒發現第二個非洲豬瘟的案例。

雖然根據調查,兩起案例皆為從中國漂流過來的豬隻,並非是台灣在本土出現的感染,但這件事情顯示出,就算台灣努力加強防疫,若是鄰近國家的疫情持續失控、免疫意識不足,台灣依舊很危險!對此農委會副主委黃金城表示,雖然自 2019 年 1 月 20 日過後,中國未再向世界動物組織 (OIE) 通報疫情,但仍未確定是否是真無疫情,推測要讓這次的疫情下降,可能要等到 5、6 月,在此之前台灣都不能鬆懈,現行的防疫政策都會持續進行。

中國大陸海漂連江豬隻,檢出非洲豬瘟病毒核酸陽性。圖/非洲豬瘟災害應變中心

 

The post 非洲豬瘟警報尚未解除!如何從邊境防堵疫情擴散? appeared first on PanSci 泛科學.


思考原來是這麼一回事! ——《學生為什麼不喜歡上學?》

$
0
0

編按:《學生為什麼不喜歡上學?》這本書以認知心理學研究成果為根基,歸納出大腦如何學習和記憶,並提供了教師如何應用這些認知原則於教學現場的方法。

心智模型長這樣,原來我是如此思考!

稍微瞭解一下思考運作的方式,有助於你瞭解思考困難的原因,這樣一來就能讓你瞭解如何幫助學生把思考變容易,也就能讓學生更樂於上學。

我們從非常簡單的心智模型說起:

【圖 1-6】最簡單的心智模型莫過於此。圖/《學生為什麼不喜歡上學?》

圖 1-6 左邊是環境,充滿了可見可聞的事物、待解決的問題等等。右邊是你心智的一部分,科學家稱之為工作記憶,現階段暫且將其等同於意識,承載你目前正在思考的內容。從環境指向工作記憶的箭頭,表示工作記憶是你大腦內意識到周遭環境的區塊:一道光線落在佈滿灰塵桌面的景象、狗在遠方吠叫的聲音等等。當然你也同時注意到目前不存在環境中的事物;舉例來說,你可以回想起媽媽的聲音,即使她不在房間裡(或其實已不在人世)。

長期記憶是儲存你對於世界的事實型知識的巨大倉庫:瓢蟲有圓點、你最愛的冰淇淋口味是巧克力、你家三歲幼兒昨天突然迸出「金桔」 (kumquats)一詞讓你又驚又喜等等。事實型知識可能是抽象的,比如三角形是三個邊的封閉圖形,還有你對狗一般外型的瞭解。

所有長期記憶中的訊息都存在於意識之外,靜靜蟄伏,直到被需要,這才進入工作記憶中,成為意識。舉例來說,要是我問你:「北極熊是什麼顏色?」你幾乎會立刻回答「白色」。這個訊息三十秒前還在長期記憶中,直到我丟出問題,你才會意識到它的存在,讓訊息變得與目前思緒有關,於是進入工作記憶中。

來試試解題吧,體驗在工作記憶中組合訊息

當你用新的方式組合訊息(來自於環境和長期記憶),思考於焉產生。組合訊息的場域就是工作記憶。為了讓你感受此一過程,請閱讀圖 1-7 所描述的問題,並試著回答(重點倒不是解題,而是體會思考和工作記憶為何)。

【圖 1-7】/《學生為什麼不喜歡上學?》

本圖描繪有三根方樁的遊戲臺。最左邊的方樁上套著三塊面積由小到大的圓盤。題目要你把三塊園盤從最左邊的方樁移到最右邊的方樁,但移動規則有二:一次只能移動一塊圓盤,而且不能把大圓盤放在小圓盤之上。

稍微想一下,就能解出這個題目, 此時重點在於體驗工作記憶被問題占據的感覺:你一開始從環境裡汲取訊息——遊戲臺的規則與配置——然後想像移動圓盤來達到目標。

在工作記憶內,你必須保持目前在謎題的狀態——圓盤的位置——並想像且評估可能的移動方式。同時你必須記住哪些移動才符合規則,如圖 1-8 所示。

【圖 1-8】你的大腦在解圖 1-7 謎題時是這麼運作的。圖/《學生為什麼不喜歡上學?》

對於思考的描述讓我們清楚知道,在工作記憶裡如何組合及重新安排概念,是成功思考的關鍵。舉例來說,在圓盤與方樁問題中,你怎麼知道要把圓盤移到哪裡?如果你沒有見過這個問題,你或許覺得自己像在瞎猜。如圖 1-8 所示,長期記憶裡並沒有任何訊息來引導你。

拆解計算的思考過程,中間需提取長題記憶

但如果你曾看過這類似問題,那麼長期記憶中很有可能有如何解題的訊息,即使訊息並不是那麼的簡單明瞭。

比方說,試著心算這道數學題:

18 × 7

你知道怎麼做這道題。我有信心你的心算步驟和以下順序相去不遠:

  1. 用 8 乘以 7。
  2. 從長期記憶中提取 8×7=56 的事實。
  3. 記住 6 是答案的一部分,然後把 5 進位。
  4. 用 7 乘以 1。
  5. 從長期記憶中提取 7×1=7 的事實。
  6. 把進位的 5 和 7 相加。
  7.  從長期記憶中提取 5+7=12 的事實。
  8. 寫下 12,後面再寫 6。
  9. 答案是 126。

你的長期記憶不僅包含事實型訊息,如北極熊的顏色與 8×7 的數值,還包含我們所謂的程序型知識,也就是進行工作時必備的心智程序知識。如果思考是在工作記憶中組合訊息,那麼程序型知識就是組合內容與時序的清單,就像是一份處方,用以完成某種類型的思考。你可能儲存處理某些事務的程序,如計算三角形面積、用 Windows 複製電腦檔案,或從家裡開車到公司。

長期記憶不僅包含事實型訊息,還包含我們所謂的程序型知識。
圖/pixabay

很顯然地,長期記憶中儲存適當的程序有助於我們思考。也因如此,解上述的數學題很容易,但解圓盤與方樁問題卻有難度。那麼事實型訊息也能幫助你思考嗎?答案是肯定的,而且還以好幾種不同的方式,這點在第二章中會討論。現階段請注意解數學題需要提取事實型訊息,如 8×7=56 這樣的事實。我說過,思考需要在工作記憶中組合訊息,通常若環境中提供的訊息不足以解決問題,你必須用來自長期記憶的訊息來補充。

當工作記憶的空間被塞爆,思考就卡住了

思考還有最後一個必要條件。舉例說明最易理解,請看下列問題:

在某些喜馬拉雅村莊的旅店裡,有一種講究的茶道儀式。參與儀式者包含一位主人和兩位客人,不多也不少。客人抵達後在桌邊入座,主人會為他們表演三道規矩。這些規矩按照喜馬拉雅人認為的尊貴程度來排列,分別是:點火、搧風、倒茶。儀式進行時,在場者任何一位都能問其他人:「可敬的先生,能夠讓我為您進行這個繁複的規矩嗎?」不過,一個人只能向另一人詢問比他正在進行的規矩中尊貴程度最低的。此外,如果一人正在進行某一規矩,那他就不能要求比他已經做過尊貴程度最低的規矩更高階的規矩。習俗規定,茶道儀式結束之時,所有的規矩都會從主人移轉到客人中最年長者。請問該怎麼進行呢?

讀完這個問題,你的第一個反應可能是「啊?」你可能會覺得必須多讀幾遍才能懂,更不用說著手解題。問題看起來很棘手,因為你的工作記憶沒有足夠空間來容納所有問題的層面。工作記憶空間有限,所以工作記憶太擁擠時,思考變得更為困難。

茶道問題其實和圖 1-7 的圓盤方樁問題是一樣的。主人和兩位客人就像三根方樁,而規矩就是要在這當中移動的三塊圓盤,如圖 1-9(很少人看出這個類比以及類比對於教育的重要,這點會在第四章中提到)。

【圖 1-9】此處以圓盤方樁題的形式來呈現茶道題。

這個版本的問題顯得困難許多,因為在圖 1-7 中清楚明瞭的內容現在必須憑空想像。舉例來說,圖 1-7 提供了方樁的圖片,有助於我們在思考移動步驟時,在心裡保有圓盤的影像。問題的規則占據許多工作記憶的空間,使得思考過程受阻,解題變得困難。

成功的思考有四大因素

總之,成功的思考仰賴四大因素:來自環境的訊息、長期記憶裡的事實、長期記憶裡的程序,以及工作記憶的空間。任何一個上述因素不夠,思考就有可能失敗。

讓我總結一下這一章。人類心智並沒有特別適合思考;思考很緩慢、費力、不可靠。因此,大多數情況下引導人類行動的,並非深思熟慮;實際上人們反而是仰賴記憶,遵循過去採取過的行動。

不過,人們覺得成功的思考有樂趣、喜歡解決問題、瞭解新的概念等等。因此,人們會找機會思考,但這麼做是有選擇性的;我們選擇那些有點難度,但看似有機會解決的問題,因為這些問題能帶來愉悅及滿足感。要解決問題,思考者需具備來自環境的足夠訊息、工作記憶的空間以及長期記憶中不可或缺的事實與程序。

 

 

本文摘自《學生為什麼不喜歡上學?:認知心理學家解開大腦學習的運作結構,原來大腦喜歡這樣學》,久石文化,2018  年 12 月出版。

 

The post 思考原來是這麼一回事! ——《學生為什麼不喜歡上學?》 appeared first on PanSci 泛科學.

你以為你在思考?背景知識是思考運作的源頭——《學生為什麼不喜歡上學?》

$
0
0

編按:《學生為什麼不喜歡上學?》這本書以認知心理學研究成果為根基,歸納出大腦如何學習和記憶,並提供了教師如何應用這些認知原則於教學現場的方法。

背景知識不但能提升閱讀力,還是思考力的源頭。我們最希望能培養學生批判思考、邏輯推理的能力,但若沒有背景知識則都是空談。

首先,你要知道,多半時候當我們見到他人在進行邏輯思考時,他其實是在進行記憶檢索

圖/pixabay

缺乏背景知識時,解題比較困難

正如我在第一章所言,記憶是我們認知過程的第一個資源。面對問題時,你會先在記憶裡找解決方法,如果有的話,你很有可能會直接使用。這麼做很省事,也很可能有效;你會記得那個解決方法,多半也是因為上回使用時奏效,而不是行不通。

要理解這個效果,請先試著去解你缺乏相關背景知識的問題,如圖 2-6 所示:

【圖 2-6】/《學生為什麼不喜歡上學?》

每張卡片的一面是字母,一面是數字。規則如下:如果字母那面是母音,那數字那面就是偶數。你的任務是要查核這四張卡片是否符合上述規則,而翻的卡片數量要降到多少,你應該翻哪機張卡片?

圖 2-6 闡述的題目比看起來難。實際上,只有百分之十五至二十的大學生答對。正確答案就是翻開卡片 A 和卡片 3。

多數人能正確答出卡片 A,顯然若該卡片反面不是偶數,那麼就會違反規則。很多人誤以為需要翻開卡片 2,但是規則裡並沒有說偶數牌的背面一定要是什麼。卡片 3 必須翻開,因為若反面印的是母音字母,那就違反規則了。

如果我有背景知識,解題會是什麼感覺?

現在再來看看這個問題的其他版本,如圖 2-7 所示:

【圖 2-7】/《學生為什麼不喜歡上學?》

假設你是酒吧裡的保鑣。每張卡片代表一位客人,卡片一面寫著客人的年齡,一面是他喝的飲料。你要執行以下規定:喝啤酒的人一定要滿二十一歲。你的任務是查核上述四個人是否符合這個規定,但你只能翻最少數量的卡片,你應該翻哪幾張卡片?

對大多數人來說,這個題目相對簡單:你會翻開寫著啤酒的卡片(確認顧客已經滿二十一歲)和數字 17 的卡片(確認這個未成年人沒喝啤酒)。從邏輯上來看,卡片 17 和前一個版本問題的卡片 3 角色相同,但卡片 3 卻是大家都沒答對的那張卡。

為什麼第二版的問題容易許多?原因之一(但並非唯一的原因)就是這個主題你很熟悉

你具有飲酒年齡的背景知識,也知道該怎麼執法,因此不需要邏輯推理。你對此問題有經驗,也記得該怎麼做,於是便不需要思考推理。事實上,大家憑記憶來解決問題的頻率,比你想像中要高出許多。

下西洋棋靠推裡?其實頂尖棋手的關鍵在記憶

舉例來說,世界頂尖西洋棋好手的過人之處,不是他們對於棋局推理的能力,也不是能下一著絕妙好棋,而是他們關於棋譜的記憶。之所以有這個結論,最主要的發現如下:西洋棋賽是有計時的,每位棋手都有一小時來走完他的棋。偶爾會有所謂的超快棋錦標賽,棋手只有五分鐘來下完一局(見圖 2-8)。

【圖 2-8】圖/《學生為什麼不喜歡上學?》

這個裝置叫棋鐘,是西洋棋計時器。黑色指針倒數剩下的分鐘數。每下完一步棋,棋手按下自己棋鐘上的按鈕,停止自己的計時,同時也開始對手時鐘的倒數。棋手在時鐘上設定的時間是一樣的,超快棋錦賽只有五分鐘,也就是說在這段時間內要走完所有的棋。黑色指針快要走到 12 時,靠近 12 的小旗就會被指針推到一旁。一旦小旗倒下,就代表棋手超過規定的時間,是喪失比賽資格。

大家在超快棋錦標賽中下得比較差是意料中事。 但令人訝異的是,頂尖棋手表現還是最優異,次優的依然是次優,以此類推。這個發現指出,讓頂尖選手優於其他人的原因,在超快棋錦標賽中依然存在;他們具有的優勢,並不是花很多時間的過程,因為倘若如此,那在超快棋錦標賽中就會失去優勢。

頂尖棋手之所以卓越超群,原因似乎是記憶。錦標賽等級的西洋棋手在選擇走法時會先評估局勢,判斷棋盤上哪塊區域最危急、自己與敵手防禦最弱之處等等。這個過程要靠棋手對於類似棋譜的記憶,而且因為那是記憶處理過程,花費時間極少,也許不過幾秒而已。經過評估之後,大幅縮小了棋手可能走的步數。只有到這個時候棋手才會進行較慢的推理過程,從好幾個可能的步數中選定最佳走法。

也因如此,頂尖棋手在超快棋錦標賽中表現依然亮眼。大部分的重活都是靠記憶完成,這個過程所花時間極少。根據這個和其他研究,心理學家預估,頂尖西洋棋手的長期記憶中可能儲存了五萬份棋譜。因此,即使在西洋棋這種大家認為是典型的思考推理遊戲中,背景知識依然具有決定性的作用。

背景知識幫助意義組塊的形成

毫無疑問,所有的問題都是藉由比對你過去見過的案例來解決的。當然,你有時候確實會思考推理,而當你在思考時,背景知識也有幫助。先前我在本章討論過意義組塊,也就是讓我們把個別部件視為一個整體單位的過程(比方說 C、N、N 變成 CNN),好為工作記憶騰出更多空間。我強調過,在閱讀中因為意義組塊而多出的腦力空間,可以用來連結句子之間的意思。這個多出來的空間對推理思考也很有用。

舉個例子來說,你有沒有那種能夠走入別人家廚房,快速地用現有素材做出一整桌美味佳餚,讓主人家驚訝不已的朋友?你的朋友看食物儲藏櫃時,眼中看到的不是烹調原料,而是食譜, 她利用了自己對於食物與烹飪的淵博背景知識。

請看看圖 2-9 中的食品儲藏櫃:

【圖 2-9】假設你到朋友家,朋友請你用一些雞肉和現成素材烹煮晚餐。你會怎麼做?圖/《學生為什麼不喜歡上學?》

美食專家具備背景知識,能從中端詳出多道食譜,例如:菰米蔓越莓餡料或是雞肉莎莎醬義大利麵。必備原料會在工作記憶中形成意義組塊,於是專家的工作記憶就有空間來進行規劃的其他層面,比如考量可以為這道菜增色的其他菜餚,或是開始規劃烹調步驟。

意義組塊也可應用在課堂活動中。就拿代數課上的兩位學生來說吧,其中一位對分配律還不太熟悉,另一位則非常熟練。 當第一位學生試著要解題,看到 a(b+c),不確定那表示 ab+c, 還是 b+ac,抑或是 ab+ac。因此他停下來,拿幾個簡單數字代入 a(b+c),確定他沒搞錯。第二位學生把 a(b+c) 視為意義單位,不需要停下來釐清,不會多占工作記憶。顯然第二位學生更可能成功解出題目。

學習專家的思考策略?背景知識仍不可或缺

關於知識與思考技巧,還有最後一個重點。專家告訴我們,他們在思考有關其領域的過程中,許多都需要背景知識,即使並非那麼描述。

舉科學為例,我們可以告訴學生許多科學家如何思考事情,學生也能記住那些建言。比方說,我們能告訴學生詮釋實驗結果時,科學家對異常(也就是出乎意料的)結果特別有興趣。出乎意料的結果顯示他們的知識不盡完全,而這個實驗包含了新知識蘊藏的種子。若想結果能出乎意料,你得先有所預料!而對於結果的預料,則是根據你對該領域的知識。我們告訴學生所有關於科學思考的策略,多數或全部都不可能在缺少恰當背景知識之下運用(見圖 2-10)。

【圖 2-10】科學家善於用「像科學家一樣思考」,但要這麼做不僅得知道並練習思考策略,還要有背景知識,才能讓他們運用思考策略。難怪知名地質學家里德曾說:「最優秀的地質學家是見過最多石頭的那位。」圖/《學生為什麼不喜歡上學?》

同樣道理在歷史、語言、藝術、音樂等也通用。我們可以提供學生關於某領域中如何成功思考推理的歸納陳述,可能看起來像不需要背景知識,但當你考量怎麼去應用時,其實是需要的。

 

 

 

本文摘自《學生為什麼不喜歡上學?:認知心理學家解開大腦學習的運作結構,原來大腦喜歡這樣學》,久石文化,2018  年 12 月出版。

The post 你以為你在思考?背景知識是思考運作的源頭——《學生為什麼不喜歡上學?》 appeared first on PanSci 泛科學.

如何擁有好棒棒記憶力?背景知識是關鍵——《學生為什麼不喜歡上學?》

$
0
0

編按:《學生為什麼不喜歡上學?》這本書以認知心理學研究成果為根基,歸納出大腦如何學習和記憶,並提供了教師如何應用這些認知原則於教學現場的方法。

記憶力取決於知識量

說到知識,具備越多知識的人,知識增長得也越快。運用同樣的基本方法,許多實驗都確認了背景知識對記憶的好處。

研究者請一些具備專業領域知識的人(比如說橄欖球或舞蹈或電子電路),以及另一些不具備任何專業知識的人來做實驗。所有人都會讀到一則故事或一篇短文,內容很簡單,即使對該領域不擅長的人也能理解,也就是說他們可以告訴你每句話代表的意思。但到了隔天,有背景知識的人比沒有的人記得的內容要多出許多。

圖/pixabay

你可能會認為,這個結果是因為注意力造成的。如果我是籃球迷,我會樂於閱讀籃球相關內容,也會讀得特別仔細;相反地,若我不是球迷,我就會覺得無聊。在其他的研究中,研究者請受試者學習對他們來說新鮮的主題(比方說百老匯音樂劇),一半受試者學很多,一半只學一點點。之後研究者請受試者閱讀其他有關該主題的新事實,然後他們發現「專家群」(也就是之前學很多的人)學習新知學得更快更好,勝過那些「新手」(之前只學一點點的人)。

我知道這個主題,所以我記得更好!

為什麼對主題稍有瞭解後,更容易記住內容?我之前說過,如果你對特定主題知道越多,就越容易理解該主題的新訊息。舉例來說,懂棒球的人比不懂的人更容易理解關於棒球的故事。事情有意義,我們會比較有印象。

下一章會對歸納推論更深入討論,但為了讓你先有概念,請讀以下兩段短文:

運動技能學習是執行熟練動作能力的改變,這些動作能達到環境中的行為目標。神經科學界有個根本且未解的問題,就是有沒有獨立的神經系統來代表習得的連續運動技能反應。用腦成像及其他方法來定義該系統,需要詳細描述為了特定的排序任務要學習的確切內容是什麼。

 

戚風蛋糕將傳統蛋糕所用的奶油換掉,改用植物油。烘焙界有個根本且未解的問題,就是何時烤奶油蛋糕、何時烤戚風蛋糕。以專家品嚐會及其他方法來回答這個問題,必須詳細描述理想中的蛋糕有哪些特色。

第一段落擷取自一篇學術研究論文。7 每個句子都可以理解,如果你花點時間,就能看出句子之間的關聯:第一句提供定義;第二句提出問題;第三句闡述在解決問題前,必須先描述正在研究中的事物(技巧)。

第二段段落是我模擬第一段短文結構所寫的,每一句的結構都是一樣的。

你覺得到了明天再來回想,你會對哪一篇比較有印象?

圖/pixabay

第二段段落較容易理解(因此較易記住),因為你可以將內容和已知的事物連結起來。經驗告訴你,好吃的蛋糕滑順有奶油香,而非植物油的油膩,所以有些蛋糕改用植物油這個事實就足夠引起你的注意了。同樣地,最後一句提到「理想中的蛋糕有哪些特色」,你能想像蛋糕的特色可能是鬆軟、濕潤等等。

請注意,這些結果和理解無關;儘管缺乏背景知識,你也能理解第一段段落,不過少了點廣度和深度。那是因為當你有背景知識時,儘管不自覺,你的大腦也會將你所閱讀的內容,和你對該主題已知的資訊連起來。

大腦會將你所閱讀的內容,和已知的資訊連起來。圖/Andrea Nguyen @flickr

幫助記憶的關鍵就是這些連結;記住東西基本上就是給記憶提示。當我們想起和目前正試著要記起來的事物有關的東西時,就是在記憶裡搜索。因此,當我說:「想想你昨天讀過的短文」,你會對自己說:「嗯,跟蛋糕有關」,然後自動地(也許完全不自覺),關於蛋糕的訊息開始閃過你的腦海——是烤的……有糖霜……生日派對……用麵粉、蛋、奶油做的……突然之間,那個背景知識(蛋糕是用奶油做的)為回想起短文提供了立足點:「啊哈,是關於棄奶油改用植物油來烤的蛋糕。」把短文中的這些句子加入你的背景知識,會讓短文更容易理解,也更好記。但是啊,運動技能的短文卻孤立無援,獨立於任何背景知識之外,所以之後比較難想起。

不只金錢,「知識」也是富者越富

長期記憶中存在事實型知識使得獲取更多事實型知識更容易,這個背景知識的最後效應值得多加思考。你能持有的訊息量多寡,端賴你已經具備的訊息量。所以,如果你具備的訊息量比我多,那你能獲得的就比我更多。

為了讓這個概念更具體(但讓數字清楚可辨),假設你的記憶中有一萬筆事實,但我只有九千筆,我們各自記住一定比例的新事實,比例多少視個人記憶中原本有多少而定。你可記得你聽聞之新訊息的百分之十,但因為我長期記憶中的知識較少,我只能記住百分之九的新訊息。假設我們兩人每個月都接觸五百則新訊息,表 2-1 顯示了十個月之後我們兩人長期記憶中所有的訊息量。

【表 2-1】從表中可見,談到知識,富者越富。圖/《學生為什麼不喜歡上學?》

十個月之後,我們之間的差距從 1000 筆訊息拉大成 1043 筆訊息。因為長期記憶中儲存內容越多的人,學習就越容易,所以差距只會越來越大。我要迎頭趕上別無他法,只能接觸比你更多的事物。就拿求學來說,我得努力趕上,但執行起來很難,因為你以持續增加的速度在拉大我們之間的差距。

前例中的數字當然都是我編的,但基本觀念正確無誤——富者越富。我們都知道豐饒物產哪裡可以找到,如果你想接觸新單字與新觀念,你要從書本與報章雜誌裡找,學生流連忘返的電視、電玩與網路(比如社交網站、音樂網站等等)多半都是沒有幫助的。研究者悉心分析學生閒暇時間會接觸的許多內容,書籍、報紙、雜誌對於學生認識新觀念與新單字格外有幫助。

知識才是比想像力更重要

我在本章一開始引用了愛因斯坦的名言:「想像力比知識更重要。」希望現在你已經相信愛因斯坦是錯的。

知識更重要,因為知識是想像力的先決條件,或至少是引發解決問題、作出決策與創造力之想像力的前提。其他名人也曾發表過知識無用之類的 言論,見表 2-2:

【表 2-2】偉大思想家貶低事實型知識重要性的言論摘錄。(點圖放大)圖/《學生為什麼不喜歡上學?

我不知道為什麼一些偉大的思想家(他們毫無疑問相當博學)那麼喜歡詆毀學校,視學校為只讓學生進行無用知識背誦的工廠。我想我們應該把這些看法視為反諷,或至少是趣談,且我不需要傑出、能力過人的智者告訴我(和我的孩子)得到知識是多愚蠢。

正如我在本章所言,最高階的認知過程——邏輯思考、問題解決等等——都和知識密不可分。確實,沒有能力使用知識,空有知識也是枉然;但同樣地,沒有事實型知識絕對不可能有效運用思考能力。

在此我引用一句西班牙諺語,提出與表 2-2 語錄不同的見解: 「Mas sabe El Diablo por viejo que por Diablo」。大致是說:「魔鬼之所以是魔鬼,並非因為有智慧,而是因為有年紀。」這句話強調經驗很重要,由此推斷知識亦然。

 

 

 

本文摘自《學生為什麼不喜歡上學?:認知心理學家解開大腦學習的運作結構,原來大腦喜歡這樣學》,久石文化,2018  年 12 月出版。

The post 如何擁有好棒棒記憶力?背景知識是關鍵——《學生為什麼不喜歡上學?》 appeared first on PanSci 泛科學.

墓仔埔小派對:那些在墓碑上生活的小東西們(*゚∀゚*)

$
0
0

陳俊堯
慈濟大學生命科學系 助理教授

 

 

Life after death,死亡國度現生機

Live after death 是英倫重金屬名團 Iron Maiden 在 1985 年發行的現場錄音。這張專輯的封面是樂團吉祥物乾屍 Eddie 從墳墓裡復活,背後是自己大大的墓碑。假鬼假怪的封面加上高速厚實的金屬,當年血氣方剛的我愛死這一味了,還在校慶時把專輯封面拿去當班上鬼屋的海報。三十多年過去,Iron Maiden 依然以高能量金屬在樂壇走跳,只是我已經退化為坐辦公桌的中年大叔,抱著 bass 想念已逝的年少輕狂。

不過,在 Science 雜誌上這篇以 Life after death 為題目的報導,還是馬上抓住了我的注意。雖然內容不是談 Iron Maiden 的音樂,但卻是個極為有趣的研究。Eddie 從石棺裡死而復生,而這篇研究裡談的,是在死人墓地裡繁衍生息的微生物。好奇妙的棲地選擇!

這篇研究看的是長在墓碑上的微生物。其實想想,以墓碑當做研究題材真是個聰明的選擇。首先墓碑是石頭,可以用來研究在石頭上生長的微生物。這環境不太優良,所以沒有高到嚇死人的生物多樣性要擔心。墓碑容易找,而且全球都有分佈,要做各個地理區的比較不成問題。墓碑上記載的時間,就是一塊全新石板被放在當地開始進行微生物生長實驗的時間。而且墓碑還有各種材質,同個墓園裡還找得到各種不同材質的墓碑。做野外實驗最怕樣點碰到人為干擾,但是墓園裡清淨得很,也不用擔心有人想把墓園填平去做別的用途。這真是個絶佳的研究主題。

大膽能吃嗎?墓碑細菌群的養分哪裡來?

墓碑絶對不是個好環境。這不是說墓園很可怕,而是石頭上沒養份又沒水,太陽直射時就得忍受沒辦法逃離的紫外光加高溫。讓我們來看看到底是什麼樣的細菌,有本事住在墓碑上。

這個研究請採樣志工帶著剛拆封的牙刷,在墓碑上把 100 平方公分範圍裡的東西刷下來,總共收集了來自美國、西班牙、哥倫比亞、丹麥、比利時等地的 149 個樣本,送回實驗室分析。在經過 DNA 萃取之後,進行後續微生物組成判讀。

在這些墓碑上,有 33% 的序列來自 Proteobacteria,其中包括分解能力很好的 Sphingomonadales 群細菌。有 15% 是能行光合作用的 Cyanobacteria,在照得到大量陽光的地方看到它們蠻合理的。其餘序列主要來自耐命的 Bacteroidetes(14%) 和 Actinobacteria(13%),以及在貧瘠的養份狀況下能存活的 Acidobacteria(6%)。以抗紫外線能力聞名的 Deinococcales 數量不少,還有很多有固氮潛力的 Frankiales 存在。在真核生物方面,真菌佔了 47%,綠藻佔了 33%,這些系列有不少來自真菌和綠藻共生而成的地衣,跟我們平常看到的石頭表面差不多。

研究團隊蒐集來自各國各地墓碑,總共有149個樣本。圖/pixabay

一方墓養一方菌?石材造就菌種大不同

那在這 149 個樣本上出現的微生物像不像呢?他們發現不同地區的墓碑上面長了不一樣的微生物,推測微生物組成會跟當地的氣候(像是溫度濕度)有關。這些墓碑主要石材是石灰岩和花崗岩,而不同的石材上面出現的微生物組成不同,這個差異比不同地點造成的影響還大。

為什麼材質不同會有這麼大的影響呢?他們比較了這些菌種的生理特性,發現花崗岩上的菌種比較耐酸,可能是因為石灰岩的碳酸鈣成分維持了中性和弱鹼性的環境。而從總基因體 (metagenome) 定序結果也發現,花崗岩墓碑上的菌群有比較多抗酸基因,而石灰岩墓碑上的菌群有比較多光合作用相關及抗紫外線的基因。他們還比較了墓碑的年代和墓碑的方向(影響日照強度),結果發現這兩個因素不太影響微生物相組成。沒想到在墓碑上也能找到這麼有趣的微生物生態故事。

© Copyright Des Blenkinsopp and licensed

看到這裡,你應該有個疑問:這研究很有趣,但是這個研究結果有什麼實際用途嗎?

其實有喔。這些在石頭表面的微生物會促進石材的風化,而很多古老建築和紀念碑的材質都是石頭,如果能搞清楚這些微生物到底在石頭上做了什麼,或許可以幫助我們保存這些具有歷史意義的建物。這群科學家推測,在花崗岩上的細菌設法產生大量的酸,把石頭裡的草酸溶解出來作為養分,所以必須耐酸。這些細菌的存在可能會加快石材的風化。但是在石灰岩上有碳酸根的中和效果,環境偏中性,所以有比較多光合生物生長來提供養分,跟花崗岩相比就是個完全不同的環境。這樣的研究結果,或許能提供後人做為保護古蹟時的策略參考。

參考文獻

  1. Ash, C. 2018. Weathering life after death. Science 360(6386), 281-2.
  2. Brewer TE, Fierer N. 2018. Tales from the tomb: the microbial ecology of exposed rock surfaces. Environ Microbiol. 20(3):958-70.

 

本文轉載自MiTalkzine,原文《在死亡國度裡找到生機》

歡迎訂閱微雜誌MiTalkzine,加入 MiTalker 的行列,一起來認識這個星球上千萬種各式各樣的微生物吧!

訂閱連結:https://goo.gl/Qo59iG

The post 墓仔埔小派對:那些在墓碑上生活的小東西們(*゚∀゚*) appeared first on PanSci 泛科學.

深海鮟鱇魚 X 檔案:糾纏在暗黑大洋中的極端癡戀

$
0
0

說到鮟鱇魚,各位的腦海中是不是浮現一隻相貌醜怪,有著銅鈴大眼、細長尖齒,頭掛小燈的巨大魚類,在黑暗的大洋底層緩慢優游的樣子?

神秘的鮟鱇魚。圖/wikipedia

鮟鱇魚(Anglerfish)因為其雌性自背鰭延伸而出,垂至嘴巴上方的吻觸手(illicium)——發光釣竿而得名。這個發光的魚餌內含發光菌,能吸引獵物靠近。除此之外,他們的嘴巴大且身體柔軟,可以吞下比自己大兩倍的獵物。

目前已知有 300 多種的鮟鱇魚,雖然有部分棲息在熱帶的淺水環境,大多數的鮟鱇魚分布在大西洋和南極海洋的陰暗深處至海平面數千公尺不等的地方,因此又可分成淺海和深海鮟鱇。一般大家熟知的「發光」鮟鱇魚,多指深海鮟鱇,但這不代表深海鮟鱇都會發光,還是有少部分是不發光的。

這類奇異的深海物種神秘、而且難以在自然環境下觀察。過去,深海不易到達,所以科學家們只能從漁民意外打撈到的鮟鱇魚屍來進行研究。這就是為什麼這支在葡萄牙亞速爾群島周圍海域拍攝的新影片會令深海生物學家如此興奮。

永不分離!深海鮟鱇雌雄配對首度亮相

從影片中各位可以看到一個拳頭大小的雌性鮟鱇魚,身上凸出了一條條發光的細長鬍鬚狀結構。若仔細觀察,她還有位伴侶呢:一隻嬌小的、埋入她身下的永久的精子提供者

這支影片是 2016 年 8 月由一對夫妻探險家 Kirsten 和 Joachim Jakobsen 在聖喬治島南側 800 公尺深的深海牆上拍攝的。在探險團隊即將完成他們的任務時,一個「有趣的小東西」吸引了他們的目光。於是他們決定追蹤這個奇怪生物,並通過潛水器 1.4 公尺寬的窗口捕捉他的動作。

Caulophryne jordani。圖/Rebikoff Foundation

經過專家鑑定,這個 16 公分長的生物是一種叫喬氏莖角 Caulophryne jordani (扇形垂釣者)的深海鮟鱇。他身上的細絲和鬍鬚狀結構的鰭條能偵測獵物,就像蜘蛛網,一旦碰到,這個垂釣者就能立刻轉向並吃掉對方。在食物極端缺乏的深海,這是他們確保自己不被餓死的殺手鐧。

嶄新資訊:鰭條上間隔性的美麗光點

除了我們熟知的吻觸手外,有注意到雌性鮟鱇魚那條條鬍鬚上的美麗光點嗎?像其他深海鮟鱇一樣,雌性鮟鱇魚用「餌球」(Esca),一種共生的發光菌誘餌來吸引獵物。但這次的影片還提供了其它訊息:

她的鰭條似乎也會按照一定的間隔發光。

雖然不清楚這些光點是生物產生的亦或只是反射自潛水器的光,這項嶄新資訊還是令科學家們非常驚喜。

盲目愛情:雄性深海鮟鱇的生世癡戀

小小的雄性鮟鱇魚也是這次影片的一大亮點。像許多其他種類的鮟鱇魚一樣, C. jordani 的雌雄鮟鱇魚會形成一個永久的配對:

一旦雄性鮟鱇找到配偶,便會咬住對方,最終與她的組織融合,透過血液取得營養。

以部分深海鮟鱇來說,雌性有明顯的「釣竿」和明亮的肉誘餌,雄性就不是這麼一回事了。他們的體型比起雌性小得多,外觀看起來就像普通小魚,而且不具有吻觸手這種吸引獵物的功能。你可能會很疑惑,那他們要如何吃東西呢?

上帝為他們關上一扇窗,必定會給予他別的能力,而比起吃,他們有著更重要的任務。

雄性鮟鱇魚擁有非常敏銳的嗅覺,幫助他們嗅探在深海黑暗中的未來配偶。當他找到她時,這個小小的追求者可能會面臨與四位男性一起分享伴侶的窘境。但愛是盲目的,對伴侶的渴望最終勝過一切。在雄性鮟鱇魚用他那小而鋒利的牙齒咬住雌性後就會失明,因為他不再需要視覺輔助他尋找伴侶;他身上的器官逐漸退化消失,只留下精囊,成為雌性鮟鱇魚身上不可移動的一個附肢。

深海鮟鱇的雌雄配對,紅色圈圈內的是雄性鮟鱇魚。圖/Rebikoff Foundation

鮟鱇魚是體外受精,所以雌性會以血管輸送賀爾蒙給雄性,讓她們在排卵的同時,雄鮟鱇也可以排出精子。於是,雄性鮟鱇魚成了她生命中不可或缺的一部分,確保雌性可以在她的餘生中產生受精卵,成為物種延續下去的關鍵角色。

這不是科學家第一次得知這項資訊,他們曾透過死去的鮟鱇魚得知這種奇怪的生殖策略,但一直到現在,他們才有幸一窺這「活生生」的例子。

死去的深海鮟鱇魚標本,看到那像肉瘤一般凸起的的小小公魚了嗎?圖/Natural History Museum

除了部分深海鮟鱇魚有寄生行為極端性別二態性(兩性間有明顯的外觀差異)外,其它鮟鱇魚只有在雄性和雌性體型大小相近時才會交配。而這些自由自在的雄性鮟鱇魚會花上一輩子的時間來找他們的真命天女,聽起來快樂多了,對吧。

吃貨小教室:美味的淺海鮟鱇

神秘的鮟鱇魚貌似離我們的生活十分遙遠,其實生活在淺海的鮟鱇魚可是日本人民的火鍋料首選呢。在關東地區,淺海鮟鱇被稱為人間極品。如果各位心臟夠強,可以先看看這部如何在家處理鮟鱇魚的教學影片 ↓

俗話說「西有河豚、東有鮟鱇」,鮟鱇魚肉質綿密、口感彈牙,含有豐富的膠原蛋白,又有「窮人的龍蝦」之稱。鮟鱇魚肝更有「海底鵝肝」的美名,據說能清熱解毒、養顏美容,是煮火鍋的熱門首選。其實不只日本,在中國東南沿海及歐美國家,鮟鱇魚也被作為食用魚類。

棲息在海平面以下數十到兩千公尺內的淺海鮟鱇,雖然也有吻觸手和餌球,但餌球缺乏發光菌,所以不會發光。他們的外觀顏色較鮮豔,可作為水族觀賞魚。

鮟鱇魚的族群多樣性很高,曾經因為棲息在海表以下數百到數千公尺的地方而不利研究,如今隨著深水探勘技術的發展,研究鮟鱇魚將不再那麼困難。相信在不久的將來,科學家們就能更進一步的了解這些神秘生物在他們漆黑無光家園中的實際樣貌。

參考資料:

  1. Exclusive: ‘I’ve never seen anything like it.’ Video of mating deep-sea anglerfish stuns biologists

  2. Anglerfish, nationalgeographic

  3. The bizarre love life of the anglerfish

  4. 鮟鱇魚家族300多種 1/4在台灣

  5. 鮟鱇魚知識大百科,翻轉你對牠的認知

The post 深海鮟鱇魚 X 檔案:糾纏在暗黑大洋中的極端癡戀 appeared first on PanSci 泛科學.

實驗有做,假說就能被驗證嗎?太天真了!——《「科學的思考」九堂課》

$
0
0

什麼樣的實驗和觀察能夠驗證假說?

當我們面對一個假說時,不能沒頭沒腦地做實驗和觀察。有些實驗和觀察可以恰當地驗證假說,但也有些實驗和觀察與假說的驗證關係不太大。

為了讓大家容易瞭解,我們來玩個遊戲。遊戲是這樣的:

我想好了一條排列三個自然數的規則,請你們來猜猜這條規則。

玩的時候,請隨便說出三個自然數,然後我來看看是否符合我的規則。符合的話我就說對,不符合的話我會說不對。透過這樣的問答,你們要猜對我心裡所想的排列規則。

【圖 5-1】來試著驗證看看假說吧!圖/游擊文化提供

 

先給大家一個提示:「2、4、6」符合我心裡想的排列規則。接下來,為了猜出我的規則,你們會提什麼問題呢?我想大概會像下面這樣:

——1、2、3 呢?

——對,「1、2、3」符合我想的排列規則。怎麼樣?猜出規則了嗎?

——規則是不是第一個數和第二個數加起來等於第三個數?

——這樣啊。如果要確認這個規則對不對,要拿什麼其他數列來問我?

——1、3、4。

——對,它們符合。

——那 1、4、5 呢?

——對。從這幾回問答可以準確猜出我的規則了嗎?

——嗯,不能說完全確定,但規則應該是第三個數等於第一個數加上第二個數吧?

……很可惜,照這樣下去,花幾個小時都沒辦法猜出我的規則。上面的例子都符合我心裡想的那個規則。不過,你們猜的規則並不是正確答案。為了不吊大家胃口,先公布正確答案。我想的規則是「三個不一樣的數」。我好像聽到有人在說「這什麼跟什麼嘛」!

只舉「正面例證」是猜不到的!

為什麼照剛才的方式一直問下去會得不到答案呢?提問的人聽到提示說「2、4、6」是對的,會想到 2 加 4 等於 6,而提出第一個數加第二個數等於第三個數的假說。所以後來才會一直舉像是「1、2、3」、「1、3、4」、「1、4、5」的例子。

這些例子全都符合自己提出的假說,它們稱為「正面例證」。但是只舉正面例證來問我,是無法猜到規則的。一定要舉不是正面例證的例子來問才行。

比方如果問「1、3、5」,我也會說「對」,因為這符合「三個不一樣的數」的規則。但因為 1 加 3 不等於 5,所以這個例子就反駁了提問者一開始提出的假說。

再來,提問者提出「規則應該是第一、第二、第三個數由小排到大」的新假說。要確認新假說對不對也是一樣,不能只提符合新假說的例子來問我。一定要提像「2、7、5」這種與假說不合的例子來試試看。不這樣的話,一定找不到正確答案。不符合假說的例子稱為「反面例證」。

很多人在玩這個遊戲時,會一直舉符合自己假說的例子。這說明了我們心中潛藏的一個重要傾向,稱為「確認偏誤」。

當我們想確認「應該是這樣吧」的時候,都只是找符合的例子。

當我們想確認「應該是這樣吧」的時候,都只是找符合的例子。圖/pixabay

比方有個「O 型的人穩重」的假說。當要確認這假說對不對時,找的都是穩重的 O 型的人,結果就深信血型與性格的確有關。我們必須去找血型 O 型但不穩重的人,或者去找穩重但血型不是 O 型的人。

關鍵有效的例證:驗證條件與否證條件

以上的遊戲猜的是我腦袋裡的規則。如果把我的腦袋換成自然界,那麼腦袋裡的規則就是自然定律,而提問的人就好比是找尋自然定律的科學家。科學家為了猜測自然定律,提出種種假說,而剛才遊戲裡的問答,就像是科學家從事的實驗。如果實驗只是去找符合假說的事例,就無法得知針對自然界定律的假說究竟是否正確(見圖 5-1)。

因此,如果要調查假說是不是正確,必須同時調查符合假說的例子,以及不符合假說的例子。它們分別稱為「驗證條件」和「否證條件」。

【小摘要】

.驗證條件:進行什麼樣的實驗和觀察到什麼樣的現象,可以知道假說正確的可能性增加了。

.否證條件:進行什麼樣的實驗和觀察到什麼樣的現象,可以知道假說是錯誤的。

提出假說之後首先必須做的事,是明確指出驗證條件和否證條件。用剛才的遊戲來說,如果你們提出的假說是「這三個數是偶數」,而問我「6、8、10」或「6、2、4」這些正面例證,那就是驗證條件。反過來說,如果問我「4、7、6」或「3、5、8」這些與假說不符的反面例證,就算是否證條件。

 

 

 

本文摘自《「科學的思考」九堂課》游擊文化, 2017 年 10 月出版。

The post 實驗有做,假說就能被驗證嗎?太天真了!——《「科學的思考」九堂課》 appeared first on PanSci 泛科學.

人人都該有的好東西:為何需要公民科學素養?——《「科學的思考」九堂課》

$
0
0

預測失準的狂牛症,下次要怪罪給誰?

BSE(Bovine Spongiform Encephalopathy,牛海綿狀腦病),是所謂的狂牛症。一九八六年首度確認有牛隻感染,兩年後英國政府委託牛津大學動物學家沙斯伍德(Richard Southwood)擔任調查委員會的委員長。但即使用上了當年最先進的知識,調查委員會也幾乎無法斷言狂牛病的任何事情。

狂牛症。圖/pixabay

即便如此,英國政府還是委託沙斯伍德進行決策(包括保護畜牧業)判斷。沙斯伍德在一九八九年完成的報告書裡預測,會感染狂牛病的牛隻最多就是兩萬頭,而且應該不會傳染給人類。這個說法成了後來的政策依據,英國政府也立刻公布了安全宣言。

但是預測失準了。感染的牛隻持續增加,在最高峰的一九九二年,光一年就有三萬七千頭。此外,在一九九六年,因吃了受感染牛隻而罹患變異型庫賈氏症(Creutzfeldt-Jakob Disease, CJD,人類的 BSE)的人,共有十例。英國政府因此被迫撤回安全宣言。

對科學家說「全交給你了」會讓科學家深感為難,而全權委託給科學家的我們也會很苦惱。這就是家長制的危險。平時全都丟給科學家,出事了就說他們是御用學者,逼他們道歉。我們打算重複這種模式到什麼時候?

遇到超科學問題怎麼辦?公民應該親身參與?

該怎麼解決超科學的問題呢?

溫伯格認為,要區分專家的任務和公民的任務。

專家應該要研究超科學的問題,能否在可能的範圍內當成科學的問題來解決。至於無法解決的部分,就應該明確指出哪些是科技可以弄清楚的,而哪些是科技無能為力的。專家的任務就到此為止。如果還有無法解決的問題,就應該由利害關係人和公民來共同參與,透過公共討論來解決。後半部分強調了公民應該負擔的任務。

我來說說自己的觀點。對於前半部分專家的任務,我有些質疑。我並不贊同「應該要研究超科學的問題,能否在可能的範圍內當成科學的問題來解決」。但我同意後半部分。它的意思是說,公民必須參與和科技有關的社會決策。

超科學的問題,要從和科學家不同的角度,進而提出恰當的問題,尋求可以接受的說明。圖/pixabay

發生超科學的問題時,我們要從和科學家不同的角度,提出恰當的問題,尋求可以接受的說明。然後根據這些說明,在理解後考慮自己應該怎麼做,而社會又應該做什麼樣的選擇。這些必須由公民親身來實踐。

實踐「公民控制科學」,人人都該培養科學素養

科學哲學家小林傳司用「公民控制科技」(civilian control of science and technology)來說明公民的任務。近代發明的各種解決問題的手段裡,科學是最有力量的其中一種。軍隊則是另外一種。軍隊若脫離公民的控制就會失控,那非常危險。我們因此創造了一種制度,用非軍人來控制軍人。這就是公民控制。

公民必須具備足以實踐公民控制科學的科學素養。圖/pixabay

科學和軍隊一樣強而有力,失控的話也很危險,因此,我們也必須用公民社會來控制科學。那要由誰來控制呢?終究還是要由公民來控制。公民必須具備足以實踐公民控制科學的科學素養

我認為,這就是全體公民都要培養科學素養的理由。或許有人聽到「公民控制科學」會覺得有點討厭,好像科學家要聽公民的命令行事。最近還有另一種說法叫「科技治理」(governance of science and technology)。但因為我想明確指出是誰在治理,故而採用公民控制這種說法。

此外,我們一直用「公民」這個概念來與科學家作對比。可能有人會問:「到底誰才算公民呢?」現在,姑且讓我們把公民想成「與科學有關係的一般人」就行了。

科學素養就是學會大量科學知識嗎?

那麼科學素養的內容是什麼呢?一般公民不是科學家,不需要具備運用科學來解決問題的素養。公民的任務並非和科學家有一樣的想法,而且公民所擁有的科學知識量也不會超過科學家。這些都不是科學素養的本質。

公民必須具備的知識,是關於「科學怎麼向前邁進」、「科學怎麼被納入政策」、「當社會處在什麼情況下,科學會出狀況」這些問題的知識。就像核能發電的例子:在什麼樣的社會狀況下、當產業部門之間的關係是如何時,它會變成像偽科學那樣的危險技術?這些針對科學的知識,就是公民科學素養中很重要的一部分。

公民科學素養中很重要的一部分就是針對科學的知識。圖/thebluediamondgallery

 

我們一直忽略這些問題。典型的例子是美國自一九八五年開始實施的理工科教育改革計畫,稱為「給所有美國人的科學」(Science for All Americans)。這個計畫為了提高國民的科學素養,列出所有美國公民都應該具備的基本科學素養。

為了列出清單,各個領域的分科會議都列舉出公民應該知道的最基本的科學知識。結果,不管是哪個領域,都挑選了大量的內容。如果把各個領域最基本的科學知識集合起來,那根本就沒有人可以完全通曉這些知識!計畫因而失敗。

根本就沒有人可以完全通曉這些知識!圖/pixabay

在二戰之後,美國嘗試了包括「給所有美國人的科學」的各種教育計畫,但美國公民的「科學素養」並沒有因此提高。這讓我們瞭解,用知識的量來衡量公民必須具備的科學素養,是徒勞無功的。而且,某個時刻的「必備知識」,十年之後便舊了。技術的發展,原本就會讓一般人完全不瞭解內部構造的黑盒子越來越多。

曾經擔任美國全國科學教師協會(National Science Teachers Association)會長,也是核子物理學家的夏摩斯(Morris Shamos)因為對此有痛切的體悟,才會在一九九五年出版科學素養的神話The Myth of Scientific Literacy),把提升國民科學素養的計畫說成是畫餅充飢。

夏摩斯認為,應該讓兩成的國民習得所謂的「科學素養」,而剩下八成的國民則學習「科學意識」(scientific awareness)。

科學素養的真意:「針對科學」的知識

科學史學家杉山滋郎曾介紹過夏摩斯的觀點(杉山滋郎,科學教育——什麼才是真正的問題?〉〔科学教育——ほんとうは何が問題か〕,金森修、中島秀人(編著),《科學論的目前狀況》〔科学論の現在〕,勁草書房,第四章)。如同杉山滋郎指出的,夏摩斯所說的科學意識(對於科學的關心和認識的程度),內容其實有點模糊。但我認為,夏摩斯談論的意識裡有很大一部分,和參與公民控制科學所需要的能力是相同的。

 

也就是說,公民科學素養的真正意義,並不是關於科學發現的知識。真正重要的,應該是「針對科學的知識」,比方說瞭解科學與技術這個行當的特性、能適當地評價批評科學家的活動,以及能檢驗專家的可信度等。

能適切地批評社會中科學和技術的現況,是很重要的。圖/pixabay

簡單地說,對於公民而言,能適切地批評社會中科學和技術的現況,是很重要的。舉例來說,要有能力參與檢視科學相關事業的預算編列是否浮濫、建立發展科學的適當制度、恰當地進行公共評論,這些才是公民科學素養的內容。

 

 

 

本文摘自《「科學的思考」九堂課》游擊文化, 2017 年 10 月出版。

The post 人人都該有的好東西:為何需要公民科學素養?——《「科學的思考」九堂課》 appeared first on PanSci 泛科學.


公民如何參與科學?從公民共識會議看公民主導問題框架——《「科學的思考」九堂課》

$
0
0

公民如何參與科學?參考公民共識會議制度

我不清楚日本政府要如何「推動讓國民廣泛地參與和策劃的措施」,但是公民共識會議(consensus conference)是可以參考的方法。這是一種讓公民參與評估科技的方法,是一九八七年從丹麥開始的。

具體來說該怎麼做呢?首先,在舉辦共識會議的半年前,先選出能在專家和公民之間居間協調、協助會議進行的主持人。然後,公開徵求公民小組,組成專家小組,並提供學習用的資料給公民小組,深化他們的知識。共識會議舉辦的二、三個月前,公民小組從想要討論的問題裡選出「關鍵提問」,交給專家小組。

這些都是正式會議前的準備。舉辦共識會議的第一天,先讓專家小組回答關鍵提問,然後請公民小組思考專家的回答,列出想要追問的問題,第二天早上再度詢問。前面的這些過程都是公開的。第二天下午舉行公民小組的閉門會議,討論之後做成共識報告。例如,讓公民小組討論「社會該如何面對基因改造食品」,做成共識報告。

第三天的會議則再次公開,由公民小組公布共識報告,然後讓所有參與者討論。共識報告在會議後出版。會議的程序大致如上所述。

據說,舉辦共識會議可收集到具有說服力的公共觀點,做出水準很高的共識報告,不會得到「基因改造很恐怖,堅決反對!」這種結論。

共識會議可收集到具有說服力的公共觀點。圖/pixabay

事實上,丹麥政府實施的政策反映了共識報告的內容。舉例來說,根據一九八七年的會議結論,丹麥政府決定不提供經費給發展動物基改技術的研究計畫,而根據一九八九年的會議結論,則禁止使用放射線照射乾燥種子以外的食品。

而在日本,則是由留學丹麥學習公民共識會議的若松征男主導,一九九八年於大阪以基因治療為主題,一九九九年在東京以網路技術為主題,試辦了公民共識會議。由農林水產省資助的農林水產先端技術產業振興中心,則在二○○○年舉辦了日本第一次規模擴及全國的共識會議,討論的主題是基因改造作物。當時擔任主持人的小林傳司,在他的誰在思考科學技術(誰が科学技術について考えるのか,名古屋大學出版會)裡,記錄了會議的過程。

「要問什麼問題」最重要:以基因改造作物為例

舉辦公民共識會議有一點很重要:由公民先提出問題。把什麼樣的問題當成問題,稱為「構框(問題框架)」(framing)。構框的本意是製作出框架,引申的意義就是指針對某個主題,決定什麼樣的問題應該納入考慮。以往,我們常常連問題框架都丟給專家決定。這麼一來,公民所害怕的事情和想要提出的問題,很可能一開始就被排除在討論範圍之外了。

公民共識會議由公民來主導問題框架。公民在學習奈米科技或基因改造科技的基本知識後,針對這些科技來決定「要問什麼問題」。我認為,這是最重要的一點。

知道自己要問什麼是非常重要的。圖/pixabay

我們能夠可以瞭解,公民科學素養的核心是有沒有提問的能力。實際上,我們會發現,表面上看起來似乎是科學的爭議,其實常常因為提問的框架在一開始就不一樣,而導致問題框架成為爭議焦點。也就是說,雙方對於必須提出什麼問題的理解不一致。一邊認為是問題的,另一邊卻覺得不是問題。這種問題框架上的爭議到處都有。

平川秀幸關心科技與社會之間的交互作用,他研究與生物多樣性公約(一九九三年生效)相關的生物安全議定書(卡塔赫納生物安全議定書Cartagena Protocol on Biosafety,簡稱卡塔赫納議定書)簽訂前的協商,分析各方企圖主導問題框架的過程(平川秀幸,風險的政治學〉〔リスクの政治学〕,收於小林傳司編,《實現公共目的之科技》〔公共のための科学技術,玉川大學出版部,第五章)。各方的協商是為了制定基改作物(GMO)進出口的規範。表面上的問題是基改作物跨越國境進口時的風險評估,但實際上,大多數的爭議都在爭論基改作物的風險應該包括哪些,各方為此相持不下。

基改作物的風險應該包括哪些?圖/wikipedia

簡單地說,要出口基改作物的先進國家,想要盡可能地縮小風險問題的範圍,而可能進口基改作物的開發中國家,則想把風險問題涵蓋的範圍盡可能地擴大。爭議的焦點在於像是過敏反應這種健康風險、抗藥性病原的出現、對生態體系的不利影響此類生態風險,以及社會、經濟、文化上的風險,該不該都當成基改作物的風險問題。

舉例來說,單一作物的大量栽培可能導致飲食文化傳統的衰退,如果歉收的話也可能會發生飢荒。此外,若是使用基改作物,發展中國家的農民每年都得向先進國家的種子公司購買種子,那麼自給自足的農業是否會因此衰退,又會不會導致農民貧窮化等問題,也令人擔憂。

單一作物的大量栽培有風險。圖/pixabay

事實上,還沒有人發生過吃基改作物致死的事件,所以基改作物的健康風險很小。如果只用健康風險的問題框架來評估基改作物的風險,可能就會因為風險很小而決定要大量採用。

因此,針對科技的社會決策,專家與公民的問題框架可能會有歧異。此外,專家往往把能夠數量化、能夠用他們熟悉的科學語言表達的事物,才當成問題。正是因為如此,對於公民的科學素養來說,恰當地提出問題,也就是提出適當的問題框架,才更顯得重要。

公民才必須主導問題框架,與科學一起來設想解決之道圖/picpedia

順道一提,關於超科學的問題,也就是「可以向科學提出,但科學無法解答的問題」,網路上提供了很多例子,但我認為那些都不是好的例子。為什麼呢?因為那些問的都是科學可以回答的問題。因此,如果放任科學不管,就有一些問題會被系統性地忽略,社會、經濟、文化風險正是具代表性的例子。

前面我曾說過,我不贊同溫伯格所說的:超科學的問題在可能的範圍內應該要當成科學的問題來解決。那是因為我擔心,在將超科學的問題重新塑造成「科學的問題」時,科學難以處理的問題就被遺忘了。

超科學的問題是可以向科學提出,但科學無法解答的問題,也是不能等著科學自己來提問的問題。正因為如此,公民才必須主導問題框架,將科學的提問範圍之外的問題重新放上檯面來討論,與科學一起來設想解決之道

 

 

 

 

本文摘自《「科學的思考」九堂課》游擊文化, 2017 年 10 月出版。

The post 公民如何參與科學?從公民共識會議看公民主導問題框架——《「科學的思考」九堂課》 appeared first on PanSci 泛科學.

用我大數學的語言傳授幸運法則!? ── 《幸運的科學》書評

$
0
0

過年期間,我讀了這本《幸運的科學》。「裡面有提到貝氏定理(數學)。」朋友跟我說的時候,我還有點存疑,畢竟這書名怎麼看都有點像是那種、打著科學招牌,講一些科學「目前」還幫不上忙的領域。

讓我決定翻開的原因是作者之一 Barnaby Marsh 曾是哈佛大學、牛津大學的訪問學者,如今正在普林斯頓高等研究院訪問。前兩間是知名的大學,普林斯頓高等研究院更是當年匯集了馮·諾伊曼、愛因斯坦、奧本海默等留名青史學者的研究機構。

能訪問這些赫赫有名大學研究機構的學者所說的話,應該還蠻值得一看的吧?我的偏見這樣告訴我。

說到底,偏見也可以用機率來解釋:
如果今天只是一般人講幸運的科學,我們以為穿鑿附會的機率很高;但如果有像作者這樣的經歷,我們就下意識的認為可信度高一些,這是條件機率教我們的。

沒想到我翻開書讀起來,還真的有貝氏定理!

貝式定理。圖/Flickr

天助自助者,怎麼讓隨機事件成功機率增加?

格雷茨基在一九八〇年代與一九九〇年代先後四次奪得斯坦利盃 (Stanley Cup) 冠軍,創下至今無人能超越的得分紀錄。當他被問到如何打進這麼多球時,他永遠只有一個答案:「我滑到冰球會到的地方。」

這是一本有趣的書,作者用了兩三百頁的分量來解釋「天助自助者」、「趨吉避凶」這些我們自以為熟知,卻不太清楚該如何徹底落實在生活中的概念。其中有些重點精準的運用了「數學語言」來描述,讓讀者(至少我)更了解他想傳遞的概念。

比方說,成功或多或少都參雜了些機運,因此作者把成功定義為一個「隨機事件」。沒有人能控制隨機事件,無法讓隨機變成確定。

但透過兩件事,能讓成功更容易發生:

一、德蕾莎修女搭頭等艙事件 ── 增加成功機運

圖/wikipedia

「以照顧貧苦病痛之人為己任的修女,竟然也有想要追求享受的一面,是想在旅途中舒服些嗎?」書中提到德雷莎修女搭頭等艙這行為受到一些批評。

你可以想像,這件事如果在台灣鐵定會上報紙頭條,然後被媒體公審。我自己查了網路資料,有一說是德雷莎修女在搭飛機時,常會被航空公司自動升級到頭等艙。但其實德雷莎修女是為了尋求更多的募款機會,精準一點的說,是「尋求更多遇到有錢人的機會」。

沒人能保證一次募款能否成功,但修女利用搭頭等艙來增加遇見富人的機率,進而提升募款次數。用個熟悉的數學例子來說,就是你無法改變丟硬幣出現正面的機率,但你可以多丟幾次。

只是生活中很多情境不像丟銅板那麼簡單,無法輕易的增加嘗試次數。有時候增加嘗試次數需要過高的成本,不一定值得去做,例如買彩券;或者,「嘗試增加次數」本身就是一個隨機事件,就像募款的例子。你沒辦法說「1 個富人沒用,那我就來遇 10 個富人吧!」。只是寫 10 封 E-mail 可能也只是徒勞的嘗試,因為這些信件通常都不會被認真看待,還是得要面對面的交流;搭頭等艙雖然不保證能遇到富人,但至少比起在便利商店遇到要來得機率高。

募款成功的機率不能被改變,但遇到富人的機率可以被改變,而這連帶會影響到募款成功的次數,所以這便是值得去做的一件事。

至於為什麼遇到富人的機率可以被改變,這就牽扯到書中的第二個重點 ── 條件機率

二、嬰兒該不該和父母同床事件 ── 條件機率

我發現,即使是那些斷言一切都是命中注定、我們不可能改變的人,他們過馬路時仍然會注意兩邊來車。

圖/pixabay

書裡舉的例子是作者跟他太太在女兒出生時,曾經討論過要不要讓她跟她們一起睡。太太認為不妥,因為跟父母同睡的嬰兒發生意外的機率,是睡在嬰兒床上的 5 倍高,因為同床的嬰兒比較容易被悶住或被大人壓到 ── 但這是一般論的結果。

作者仔細研究後發現,許多意外是發生在父母喝醉、過度肥胖、教育程度不高的情況下(這邊作者沒有解釋清楚,但我想背後是指教育程度不高的父母,有相對高的比例會選擇不準備嬰兒床);另外,床鋪過軟、沙發、水床、過多的毛毯也都是問題。

作者根據自己家裡的情況考量後,發現他們與女兒同床的風險是低於千分之一的。

換句話說,以下兩種機率是相差很多的:

  1.  嬰兒跟父母同床發生意外的機率。
  2.  給定 king size 床,且夫妻各用一條單人被的條件下,嬰兒跟父母同床發生意外的機率。

再用我們習慣的骰子做例子:丟骰子出現六點的機率是 1/6,但相信很多人小時候(或現在依然是)丟骰子時,會刻意把六點的那一面朝上或朝下,因為我們不知怎麼地,以為這樣比較容易出現六點 ── 這就是試圖以增加條件,把機率變成條件機率,進而趨吉避凶。不過六點這面朝上,這個方法事實上可能沒什麼效就是了。

我們會刻意把六點的那一面朝上或朝下,試圖把機率變成條件機率,不過這個方法事實上可能沒什麼效。
圖/pixabay

說說其他例子:以前有一位老師跟我說:「大家都說:『創業成功的機率只有 5%,所以創業很難。』這是錯的。舉個極端一點的例子:可能是有 99% 的人缺乏某些特質,注定失敗,有 1% 的人怎麼創業都成功。重點不在成功的機率,而在於你有沒有具備哪些條件。」

平均的機率或統計有一定的代表意義,但在套到自己身上時都必須根據自身的條件重新去思考。反過來說,我們可以不斷增加各種條件,讓自己想實現的事件,變成機率值越來越高的條件機率。

作者對此有一個很漂亮的說法:有一個打敗機率的方法,就是將它們個人化。

再回到前面過馬路的例子來說,被車撞到是隨機事件,而過馬路前先左右張望,不也就是再增加條件,把它變成條件機率嗎?

要如何更幸運?

這本書有好幾個段落當讓我覺得很有趣:早就學過的機率知識,許多正面思考的書籍中常見的情境與道理,串在一起後卻讓人有種「原來還能從這個角度看啊」的新奇感,就好像看見老朋友不曾見過的那面一樣。

從這樣實用面來介紹條件機率,也比「給定出現的點數是奇數,求出現 3 點的機率是多少?」這樣的題目,更讓人有感、覺得數學好玩有用 …… 說到最後有點離題了。

本書的主旨是講如何更幸運,範圍非常廣泛,從工作、愛情、到育兒都講了。雖然這不是我的專長,但裡面的一些觀點卻讓我覺得有趣,或許也會放在心上,想找機會用用看(像是我個人很喜歡教養那邊,作者認為孩子需要的是「能辨認他們眼前所有可能導致快樂的途徑的能力」),雖然這都只是很個人主觀的看法而已。

不過如果對機率有興趣,想看看專家怎麼把機率與幸運做結合,相信書中前面的幾章,你應該會讀得蠻開心的。

圖/pixabay

The post 用我大數學的語言傳授幸運法則!? ── 《幸運的科學》書評 appeared first on PanSci 泛科學.

第二次文藝復興進行 ing ──《發現時代》推薦序

$
0
0

我們無疑是活在一個加速的時代,幾乎每隔十年的世代,就會出現各種程度的鴻溝。

過去在沒有電腦的時代,要獲取知識有多麻煩已難以想像,現在我們可以輕易上網在維基百科就能查詢到比大英百科全書更新、更多、更準確的資訊,這還能發生在我們手中的智慧手機上,而且其運算能力都遠比登月計畫的電腦還強大!還能聯繫起全世界各個角落的人們!

我們人類知識擴展的速度和邊疆之快之廣,讓我們現在能夠體驗到人類前所未有的事物。這還包括虛擬實境、人工智慧、自動駕駛、精準醫療等等大幅提升感官能力、便利性以及健康的新發明。這讓我們的政治、社會、教育、生活產生了重大改變。而我們也漸漸地發現,似乎有些人已經趕不上時代的飛速轉變,落後的甚至還包括政治領導菁英和公共機構。

人類知識擴展的速度和邊疆之快之廣,讓我們現在能夠體驗到人類前所未有的新發明。
圖/pixabay

我們人類真的是初次遇見這樣的巨大變革嗎?

英國牛津大學馬丁學院的伊恩・戈爾丁 (Ian Goldin) 及克里斯・庫塔納 (Chris Kutarna) 卻要在《發現時代:駕馭 21 世紀的機遇與風險,實現成就非凡的第二次文藝復興》(Age of Discovery: Navigating the Risks and Rewards of Our New Renaissance) 論證出,我們人類早已有過類似的經驗了!

西方社會大變革 ── 文藝復興

發現時代》的原文書名 Age of Discovery,原本特指的是 15 世紀到 17 世紀時期,當時歐洲的船隊出現在世界各處的海洋上,尋找新的貿易路線和貿易夥伴。在這些遠洋探索中,著名的航海家發現了許多當時在歐洲不為人知的國家與地區。在中世紀晚期發源於義大利中部佛羅倫斯的文藝復興也差不多發生在這段時間,然後擴展至歐洲各國。

兩位作者從多方面探討第一次文藝復興時代中,西方社會遭遇到的天翻地覆改變!當時的世界在古騰堡、達文西、米開朗基羅、哥白尼和哥倫布的推動下,產生了一系列的飛躍,在藝術和科學上都有巨大的認知升級及重塑,而且新世界的發現帶來的衝擊比起登月是不遑多讓,可謂貨真價實的大躍進。

雖然最早發明活字印刷術的是中國人的老祖宗,可是中文字的特性及古時的社會狀況讓活字印刷術在中國難有用武之地,但是卻非常適合使用拼音文字的歐洲,古騰堡的成功讓馬丁・路德能夠挑戰天主教會對知識的壟斷和禁錮;在我們這個網際網路如同電流和自來水一樣普及的年代,知識的傳播也逃脫了紙墨的限制,而能夠以零邊際成本的方式無限傳播。

中國的老祖宗發明的活字印刷術西傳後,古騰堡的成功讓馬丁・路德能夠挑戰天主教會對知識的壟斷和禁錮。
圖/pixabay

我們可能活在人類有史以來最美好的時代,我們這百年內在壽命、健康情況、識字率、財富上都有質和量的顯著增長,幅度甚至比過去幾千年還高。窮國不僅有大量人口脫貧,過去落後國家只能看著先進國家的國民使用高科技產品流口水,可是現在拜自由貿易和全球高度分工的供應鏈所賜,最新、最潮的高科技民生消費品是無遠弗屆,甚至不少發展中國家跳過市話直接使用智慧手機已經不是新聞。全球正以通訊科技和自由貿易的革新更緊密結合在一起。即使僅用像 GDP 成長這樣的指標來衡量,我們人類的財富在幾十年間的增長速度就比過去幾百年還快了,更甭提太多科技帶來的便利是無法用經濟指標評量的。

進步所帶來的危機與挑戰

不過,飛快的變革也超過了一般人所能夠適應,在先進國家已有好一大部分的勞力似乎不再被需要,大幅加劇了窮富差距;更緊密聯繫的貿易及交通網也帶來新興傳染病快速傳播的危機及挑戰,這過去已在歐洲造成了黑死病蔓延。另外,社會對立、仇外心理和意識形態極端主義也在侵蝕進步的根基。

過去的歐洲曾有黑死病蔓延。
圖/wikimedia

戈爾丁及庫塔納認為,我們現在的狀況需要以史為鑒,而該把這個時代視作新的文藝復興,才能懂得處理現在面臨的問題。我們如今享受著第一次文藝復興帶來的各種美好事物,可是如果穿越到那個時代,西方社會也面臨著知識創新、貿易、移民等帶來的磨擦,那就是個沿續了幾個世紀的動蕩時代。

新文藝復興時期已經到來

新文藝復興的潘朵拉盒子 (Pandora’s box) 已經打開,不管放出的是啥,都不太可能再收回去了,時代的潮流已無法停止。面對巨大的不確定性,該採取行動時猶豫不決,是符合人性的,但卻解決不了問題。我們不該再幻想要回到過去虛幻的美好,保持開放的想法、愛上藝術、擁抱移民和城市的活力以及建立社會安全網,是作者認為能在這個新文藝復興時代成為贏家的最佳解方!

發現時代》帶你進入兩個文藝復興時代的宏偉世界,探索曾經且正在發生的巨變,更理性樂觀地面對未來的世界!

本文為《發現時代:駕馭 21 世紀的機遇與風險,實現成就非凡的第二次文藝復興》(Age of Discovery: Navigating the Risks and Rewards of Our New Renaissance) 推薦序,原文刊登於 The Sky of Gene

The post 第二次文藝復興進行 ing ──《發現時代》推薦序 appeared first on PanSci 泛科學.

挖個從美國通到中國的洞,然後跳下去會怎樣?──《然後你就死了》

$
0
0

你在長大過程中(應該是小時候),或許曾心血來潮,想挖個從美國通到中國的洞。你甚至可能動手過,在海灘挖了差不多一公尺。

現在你年紀增長,更有毅力了。假設你下次到了海邊,完成童年時的未竟志業,挖了個穿過地球、深達八千哩(約一萬兩千八百公里)的洞,然後一股腦跳下去。

接下來會怎樣?

如果你從美國大陸開始挖,最後會溺斃在印度洋。若想在美國挖洞,最後在乾燥的陸地上冒出,得從夏威夷海灘上開始挖,最後你會在波札那的狩獵保護區冒出來。圖/pixabay

問題一:起點很重要

首先,得看你從哪裡開始挖。你的確切起點很重要。別以為中國就在美國的對面。這是錯誤的觀念。事實上,如果你從美國大陸開始挖,最後會溺斃在印度洋。若想在美國挖洞,最後在乾燥的陸地上冒出,得從夏威夷海灘上開始挖,最後你會在波札那的狩獵保護區冒出來。

問題二:摩擦摩擦,直到你剩一攤爛泥

但從夏威夷開始挖也有問題。地球外殼的旋轉速度比內部要快得多,和旋轉木馬一樣。你站在夏威夷海灘上,會比地球核心的移動速度每小時快八百哩(約一千兩百八十七公里)。因此,當你跳進洞裡之後,會一路摩擦著岩壁往下,而朝著另一頭往上時,背部也會摩擦岩壁。

要是摩擦速度慢,你只會輕微擦傷。但高速墜落時,持續擦傷會把你的皮膚與骨頭磨光,直到你只剩一攤爛泥。

地球外殼的旋轉速度比內部要快得多,和旋轉木馬一樣。高速墜落時,一路摩擦岩壁會把你的皮膚與骨頭磨光,直到你只剩一攤爛泥。圖/wikimedia

要避免摩擦致死,最聰明的方法是從南極或北極開始挖,這裡地表的旋轉速度與核心的旋轉速度差不多。

這是第一步驟。不過,跳進穿過地球的洞穴,風險可不只擦傷致死而已。

人體在海平面以屈體墜落時,終端速度約為時速兩百哩(約三百二十公里)。以這種速度墜落八千哩需要四十小時。換言之,你大可以照一般的方式訂機票,中間經過轉機幾次的折騰後,便能抵達波札那。但假設你不趕時間,花四十小時也無妨。只是,你仍舊不可能通過地球。

問題三:重量減少、空氣密度增加,讓你「漂」在半途

你在幾秒鐘之後,速度就會慢下來。原因有二。

首先,接近地球中央時,就沒有那麼多的地球重力把你往下拉,這表示你的重量會減少 ,墜落速度也跟著變慢。但第二個原因則比較危險:空氣變厚重。

海拔八千八百四十八公尺的聖母峰是地球最高點,那高度沒有太多大氣來壓縮空氣,因此地表的空氣會比較稀薄,只有受過良好訓練的登山者才可能生存。

你往反方向前進時,則會發生相反的情況。

由於上方的大氣增加,你墜落過程的空氣也會越來越受壓縮。你才僅僅墜落六十哩(不到全程的一%,約九十七公里),空氣的密度已和水一樣。你會下沉一會兒,但後來就達到平衡狀態,屆時空氣和你的密度一樣。因此,你永遠會「漂」在地球裡。

屆時空氣和你的密度一樣。因此,你永遠會「漂」在地球裡。圖/pxhere

由於大氣壓力會擠壓你的氣室,因此你在地球內部的密度也會比目前還高,並且沉得比你預期得深。但你還是到不了地球的另一端。

顯然,這個沙坑需要重新設計一下。要解決空氣密度的問題,就是抽光隧道中的空氣再封起,使之成為長長的真空管。這就解決了漂浮與移動速度太慢的問題,你現在會以時速一萬八千哩的速度(約兩萬九千公里),尖叫著通過地球中心,而非卡在半途。

問題四:超高溫將你全身汽化

可惜,這條隧道還是不能安全使用。俄羅斯人曾挖掘過世界上最大的沙坑,他們證實:地球中心太熱了。

俄羅斯的沙坑稱為「科拉超深鑽孔」(Kola Superdeep Borehole),是一項從一九七○年開始、為期二十二年的龐大計畫,目的只是想了解他們能挖得多深。蘇聯在一九八九年已經挖到四萬呎(十二.四公里),後來因為鑽頭焊接處遇到高溫熔化,計畫才告終。即使他們才挖了地球不到○.一%的深度,溫度即已上升到一百八十度。

根據經驗法則,從地表往下每挖一百呎(約三十公尺),溫度就會上升攝氏約零.五六度,也就是墜落兩秒,你大概就會覺得變暖○.五六度。沒什麼大不了。但你在新真空管中,會加速得非常快。

三秒後,隧道中的溫度會提高一.五度,三十秒後,就和烤箱一樣暖。這可不舒服,但你卻能存活超長一段時間。十八世紀,英國科學家查爾斯.布萊格登爵士(Sir Charles Blagden)把一間房間加熱到一百零五度,在裡頭坐了十五分鐘,毫髮無傷地走出來。不過,布萊格登爵士所在的房間不像你的隧道那樣越來越熱。三十秒後,你或許還活著,但這個洞會繼續變熱。再過三十秒,你前進十三哩(約二十一公里),溫度已經抵達五百三十八度。若你帶了加熱即食的披薩,這時已可以吃了,當然你自己也已經熟了。

你在新真空管中三秒後,隧道中的溫度會提高一.五度,三十秒後,就和烤箱一樣暖。再過一分鐘,若你帶了加熱即食的披薩,這時已可以吃了,當然你自己也已經熟了。圖/pxhere

但情況越來越糟。你仍無法抵達地球另一端。

地球中心的溫度高達六千一百度,比太陽表面還燙。在那溫度下,你的身體會立刻汽化,電子遭撕碎,剩餘部分也將變成零碎的電漿。

所以,我們又得繼續更改你的隧道設計。

如果我們把這隧道的隔熱功能做得非常、非常好(當然不可能做到)。你能順利抵達嗎?

問題五:能量守恆

設沒有撞到隧道的岩壁,且排除了導致速度變慢、抵達另一端時身體東缺一塊西缺一塊的因素,那麼你在時速一萬八千哩的情況下,只要十九分鐘即可來到地球中心。一旦你通過中心,速度又會開始變慢,因為地球會開始把你拉回。但就像遊樂場的鞦韆,你的動能會把你推回一開始的高度──在這情況下,就是地球的另一邊。

假設排除了上述所有問題,只要十九分鐘即可來到地球中心。但就像遊樂場的鞦韆,你的動能會把你推回一開始的高度──就是地球的另一邊。圖/pxhere

如果忽略目前科技無法在地球核心的極端溫度與壓力下挖掘的問題,你可能抵達地球另一端嗎?可以!大約三十八分十一秒,即可抵達地球另一端。到時候要扶好彼端的地面。

要是沒扶好,你就得重來一遍了。

 

 

本文摘自《然後你就死了:被隕石擊中、被鯨魚吃掉、被磁鐵吸住等45種離奇死法的科學詳解》,2018 年 5 月,臉譜出版。

The post 挖個從美國通到中國的洞,然後跳下去會怎樣?──《然後你就死了》 appeared first on PanSci 泛科學.

除了海豚烏龜,微生物也受到海洋塑膠的影響

$
0
0

楊姍樺
東海大學生命科學系 助理研究員
大學因為對鳥類恐懼誤打誤撞進入微生物領域,日久生情進而對環境微生物有了興趣。是一個希望達到和環境互相包容、與微生物互相包養的小小台灣土產博士。

就連整潔乾淨聞名於世的日本,海邊也看到各式塑膠垃圾。圖/楊姍樺 攝於沖繩

前陣子在沖繩的海邊,看到一位歐吉桑拄著拐杖,面朝大海迎著風和光閉目養神好愜意。就在我也想張開手臂迎著這春暖花開的下一秒,他生出個寶特瓶帥氣地往海裡丟,那個畫面非常衝擊。就在同一天,看到高雄小虎鯨體內十八個垃圾袋的新聞,雖不意外,但很悲傷。

近來,海洋塑膠幾乎是最熱門的議題,相關研究數量也在 2017 下半年爆炸性的增加,想寫計畫得看的參考資料多到足以讓我掉淚。這些研究的範圍包含了沙灘、近海、遠洋,或是各類海洋生物體內。這些研究結果顯示,無論是什麼地點,幾乎都能看到海洋塑膠的蹤跡,比收集寶可夢還簡單,就連南極海與深海底棲的無脊椎生物也都淪陷了。

這些海洋塑膠的大小從看得見的到看不見的都有,大的垃圾風化成小的,小的再風化成看不見的微塑膠。因此,受到影響的生物,當然也就包含了看得到的生物,與肉眼難以察覺的微生物了。

海洋微生物包含了:微藻、細菌、古菌、真菌與病毒。

它們小歸小,但在海中的數量龐大,根據美國國家海洋暨大氣總署的資料,海洋微生物占了海洋生物量的九成以上。因此,當龐大的海洋微生物與海洋塑膠相遇,會擦出什麼火花呢?其實科學家們目前對這方面知道的很有限,因為海洋微生物的功能繁雜,海洋塑膠的種類又多元,再加上海洋塑膠與微生物間還會彼此影響,就讓事情變得更不單純了。

五花八門的塑膠種類,與微生物無限多的互動可能

許多人可能都有這樣的經驗,常用的水壺或是保溫瓶中,一段時間沒有清洗,或者就算每次都乖乖地清洗,瓶身的縫隙或是矽膠圈都會有很難清除的污垢,那是微生物構成的生物膜。只要是有水的環境中,固體的表面上很容易就會成為微生物的家。所以,可以想見,在海水中的塑膠上,左右逢源,可說是微生物的新天地。

當微生物黏附在塑膠上,不離不棄形成生物膜之後,塑膠的命運就撲朔迷離,走向各種不同的結局。因為,生物膜裡的微生物可能增加塑膠風化的速度,也有可能因為包覆了塑膠,減少塑膠接受 UV 光的照射,反而減緩了塑膠風化的速度。由於微生物會影響塑膠風化,也就會改變塑膠的大小與重量,而進一步會減緩或加速塑膠在水中的沉降,這也是為什麼連在深海中也可以看到塑膠的原因之一。

另外,我們餵給大海的垃圾種類五花八門,這些垃圾上又有形形色色的添加劑,像是漆、塑化劑或安定劑等。這些成份在與微生物接觸之後,本來安定添加物可能就會變得不安定而溶在水中。溶解的量與程度因為環境或是微生物的不同而改變。目前科學家們對這部分的知識也還在摸索當中。

珊瑚內的驚悚包。塑膠垃圾不只是會被鯨豚魚群吃下肚,珊瑚也會將它們包覆。但不知道這些被珊瑚承擔了的塑膠,會對珊瑚與珊瑚共伴微生物造成什麼影響。圖/楊姍樺攝於沖繩

還有,生物膜上多半有微生物產生的胞外聚合物 (extracellular polymeric substance,EPS),EPS 有黏性,可以讓微生物黏在一起,被微生物附上的塑膠微粒也會因此容易黏在濾食性生物的鰓上。想想看,冰箱冷氣的濾網久久沒清會發生什麼事?可憐的是,這些生物鰓上塑膠微粒並沒人會來幫牠們清。

再來,由於不同材質的塑膠會吸引不同的微生物聚集,不同的微生物也會產生不同的代謝物,這些代謝物也會誘使一些本來不會吃到塑膠的海洋生物靠近。就像要你在沒有添加任何調味的水煮雞胸肉,或炸雞排之間做選擇,大部分我們還是走向「老闆雞排一份不切要辣」的那邊。有些以微生物為食的消費者,也就這樣順便將塑膠吃了下去。不過什麼樣的微生物會吸引什麼樣的生物來進食,這一點現在也還不是很清楚。

微生物研究開飯囉,「塑」食主餐挑不完

你可能會問我,不是最近這方面的研究爆炸性的多了嗎,怎麼講到什麼都是不清楚?因為人類製造的垃圾種類太多也太複雜了,在垃圾上的微生物的種類也數不清,科學家們研究的速度遠遠追不上我們製造問題的速度。

海洋雖然圍繞在我們身邊,但往往也是被疏忽的一環,畢竟科學研究的主力多半放在人的身上,因此不管是研究人力與經費,都往往不及醫學以及電子產業。然而,就算科學家們都卯起來做海洋塑膠與微生物的研究,光是塑膠種類與微生物的組合,再加上其他生物與非生物的因素,要在近期內(有生之年)解答前面的問題,也不是簡單的事。

而且,就算知道了微生物與海洋塑膠間的情愛糾葛,塑膠對生態系的危害還是沒有解決。或許未來我們會篩選到一些具有降解塑膠能力的微生物,也或許會知道哪些生物被危害的很嚴重要避免食用,再或許發明了更威猛的海洋吸塵器可以將海洋垃圾清除乾淨等等,但這些都是或許,也都是未來式。其實要減輕危害的方式,最不複雜且立即可以做的就是減少塑膠製品的使用,以及落實垃圾的回收。

要是現在自己能做的都做不到了,還去期待科學的進步可以怎麼幫我們解決海洋塑膠問題,也太不切實際了不是嗎?

 

本文轉載自MiTalkzine,原文《塑膠微粒與海洋微生物》

歡迎訂閱微雜誌MiTalkzine,加入 MiTalker 的行列,一起來認識這個星球上千萬種各式各樣的微生物吧!

訂閱連結:https://goo.gl/Qo59iG

The post 除了海豚烏龜,微生物也受到海洋塑膠的影響 appeared first on PanSci 泛科學.

Viewing all 1714 articles
Browse latest View live


<script src="https://jsc.adskeeper.com/r/s/rssing.com.1596347.js" async> </script>