- 文 / 卜宏毅│加拿大圓周理論物理研究所博士後研究員,事件視界望遠鏡核心成員
事件視界望遠鏡(Event Horizon Telescope)在今年 2019 年 4 月 10 日公布了人類史上的第一張黑洞照片。這張照片距離我們約五千五百萬光年,為 M87 星系中心的超大質量黑洞 (約有六十五億個太陽質量);於 2017 年 4 月 5 號到 11 號之間的四個晚上,由七個遍佈全球(夏威夷,美洲,歐洲)的電波望遠鏡共同觀測所得到。M87星系有個明顯的噴流,這次黑洞的影像正是這個噴流的「源頭」。

credit: EHT Collaboration (figure 3 of paper I), and NASA, NRAO, and J. Biretta.
經過近兩年的資料處理,資料分析,理論分析等漫長過程,目前成員約兩百多人的EHT團隊在四月十日除了公布影像外也發表了六篇論文,分別討論了:
- Paper I :Overview 簡介
- Paper II :Array 望遠鏡陣列
- Paper III:Data數據
- Paper IV:Image影像處理
- Paper V :Theory理論
- Paper VI:Feature extraction影像特徵分析
這張黑洞近照雖然廣義相對論預測的結果相符,但也有許多對天文學家來說的意料之外(請期待下一篇文章)。

EHT拍攝到的M87黑洞,是人類史上第一張黑洞影像。圖/photo credit: EHT Collaboration
為什麼要看黑洞影像?
黑洞是一種時空結構,也是一種奇怪的天體。根據理論預測黑洞的緻密、輻射、噴流特性等,天文學家慢慢接受黑洞真實存在於宇宙之中。但是,人們但從未看過黑洞的近照。
這次黑洞影像的意義除了驗證黑洞是否存在、我們對黑洞的認識是否正確,也驗證廣義相對論在強重力場下的正確性。這次對 M87星系中心黑洞的近照,提供了 M87星系中心黑洞質量估計,以及黑洞附近噴流產生的物理細節。
黑洞近照為什麼像是甜甜圈?
黑洞本身不發光,天文學家所觀測到來自黑洞的輻射是來自於黑洞周圍包圍住黑洞的物質,這些物質在不同的頻率因為不同的機制發出輻射。根據廣義相對論,光線在黑洞附近會被彎曲,部分光線會被黑洞吃掉(如下圖),因而形成狀似是甜甜圈內部的陰影區,稱為黑洞剪影(black hole shadow)。這個甜甜圈的內部陰影正是黑洞──時空中的一個洞──的具體表現!
愛因斯坦的廣義相對論預測了黑洞剪影的形狀與特性,而黑洞附近的發光物質的空間分佈、能量分佈、與運動特性則提供各種不同的發光背景,烘托出這些黑洞的剪影。關於黑洞剪影的介紹可以參考之前的文章「下一站:黑洞」。旋轉的黑洞也會對剪影造成影響,可以參考之前的文章「為什麼星際效應裡的黑洞長那樣?」。這些都是在理論分析黑洞「近照」時需要考慮的課題(有興趣的讀者可參考paper V)。

非旋轉黑洞附近的光線軌跡。圖片中央的黑洞能“吃掉”(補捉)周圍的光線,形成剪影。被捕捉的光線用黑色表示。有興趣的讀者可以使用免費教育軟體Odyssey_Edu模擬光線在黑洞附近軌跡。(credit:卜宏毅)

黑洞影像中剪影區域的示意圖。EHT 團隊根據廣義相對論,磁流體力學,以及之前對 M87 星系的了解模擬了超過六萬張的黑洞影像資料庫並加以分析。這些影像分別對應了不同的黑洞旋轉速度,觀測角度,可能的氣體溫度分佈,氣體環繞方式,以及氣體環繞黑洞的不同「時刻」。儘管對一些細節物理的不確定,觀測到的剪影與我們對 M87黑洞以及其周圍的環境大致符合(有興趣的讀者可參考paper V,尤其是其中的 figure 6 呈現了如何將理論黑洞影像與觀測數據比較的範例影片)。由剪影的大小,也獨立推論出 M87星系中心的黑洞約有六十五億個太陽質量(有興趣的讀者可參考paper VI)。(credit:EHT Collaboration)
為什麼是M87?為什麼選M87?
天體在天空中的張角由大小與距離決定。根據所有已知黑洞的大小與距離,M87星系中心的超大質量黑洞在天空中的張角是第二大的,大約有 40 個微角秒(micro arcsecond; 1角秒=1/3600角度)的黑洞(約是一個硬幣放在月球上時的張角)。
排行第一的是位在我們銀河系中心的黑洞,約有 50 個微角秒。但在地球上觀測銀河系中心時, 會受到銀河系盤面星系介質造成的散射影響。EHT 團隊目前還在分析對銀河系中心黑洞的觀測資料。
為何用電波觀測黑洞剪影?
選定要觀測的黑洞目標後,根據天體的輻射特性,我們要挑選適當的觀測頻率才能不被黑洞周圍的發光物質擋住而看見黑洞的剪影(如下圖解)。M87附近的 EHT的主要觀測頻率是在電波(radio)波段,頻率 230GHz (波長 1.3mm)。
望遠鏡的解析度大致可用觀測的波長 λ,除以望遠鏡的大小 d,來估計。當觀測頻率與波長決定之後,我們可以利用上述:λ/d~40微角秒的要求,估計出大約需要六千公里以上的望遠鏡大小,才能達到足夠的角解析度(angular resolution)來看到在M87星系中央的黑洞剪影。

模擬被發光物質包圍的黑洞用不同的觀測頻率時所觀測到的影像。在適當的觀測頻率下(下方圖)可以看到黑洞剪影。此範例是一個極端的情況:快速旋轉的黑洞且其旋轉軸垂直於觀察者,造成剪影明顯的不對稱。(credit:卜宏毅)
為什麼照片看起來是模糊的?
EHT利用電波望遠鏡和甚大陣列干涉儀(VLBI; Very Long Baseline Interferometry)技術觀測黑洞影像,而非是用光學望遠鏡,因此黑洞的照片其實不是「拍到的」,而是利用以下簡介的電波干涉儀原理「分析得出的」。影像的顏色不具意義(人眼無法看見電波),僅影像的相對亮暗對應了電磁波輻射能量的大小。因此黑洞的照片並非像是如同手機拍照般“拍到的”。
要怎麼打造一個六千公里以上的超大望遠鏡呢?答案是利用很多的望遠鏡一起合作觀測。下圖是 2017 年參與觀測 M87 的望遠鏡(因為 M87位於北半天球,南極望遠鏡 South Pole Telescope 無法觀測 M87)。這些望遠鏡的連線稱為基線(baseline)。2017 四月的觀測很幸運的幾乎每個望遠鏡在觀測的時候都遇到了好天氣,這些望遠鏡能同時觀測到 M87 的月份也決定觀測時間的選擇。

2017年 EHT觀測的望遠鏡成員。其中為在南極的 SPT因為地理位置的關係未能參與M87的觀測。甚大陣列干涉儀所指的「甚大」 指的是望遠鏡與望遠鏡的距離相當遠,未能有硬體設備直接連接。(credit: EHT Collaboration; figure 1 of paper I)
當地球自轉時,這些基線的兩端畫出的軌跡,電波天文學家習慣畫在下方稱為 uv-plane 的平面上。於是,利用地球的自轉,我們就能用這些望遠鏡成員模擬出有如一個像地球那麼大的電波望遠鏡。
基線越長,越能看見細微的結構(這些觀測的細節數學上與傅立葉轉換有密切的關係;電波望遠鏡利用干涉儀原理觀測,得到的訊號稱為 visibility,其與影像之間的關係符合傅立葉轉換)。因此能填滿在 uv-plane 上越大的圈圈面積,就能對應到越好的角分辨率。

望遠鏡與望遠鏡間形成的基線,因為地球的自轉改變與觀測目標的相對位置,形成一個如地球大的虛擬的望遠鏡。不同時刻的基線分佈貢獻了這個虛擬望遠鏡的不同部分。圖為畫在uv-plane上的基線軌跡,稱為uv-coverage。(credit: EHT Collaboration; figure 2 of paper I)
一個甚大陣列干涉儀(VLBI)的觀測好壞,大致就是由在 uv-plane 上的這些軌跡的分佈與密度(uv-coverage)決定。
下圖的範例中,給出了一個模擬的黑洞剪影影像(左上方圖),用兩組不同的 uv-coverage 所觀測的結果。若望遠鏡的基線能因為地球自選而填滿藍色(或紅色),則能得到右上方(或右下方)的分析影像。

甚大陣列干涉儀(VLBI)觀測結果取決於uv-coverage。如果左上方是M87黑洞剪影的影像,uv-coverage填滿藍色區域還不足以解析出黑洞影像。若uv-coverage可填滿紅色區域,則能大致解析出黑洞的影像。真實觀測的uv-coverage介於兩者之間(見前圖)。(credit: 卜宏毅)
在這個範例中,填滿藍色的情況不足以解析出黑洞剪影。上圖 M87 觀測的 uv-coverage,雖比藍色圈圈大但無法完全填滿紅色圈圈,觀測的品質剛好介於這兩種情況中間:這意味著在有限的望遠鏡數量、望遠鏡分佈、以及觀測時間下,我們僅能組成「部分」的虛擬望遠鏡,並在對觀測數據分析成影像時,對欠缺的資訊進行人為的假設。
EHT 的影像分析團隊也由不同的四個獨立小組構成,交叉驗證大家所得到的影像結果大致一致,最後公布的照片是由所有小組的影像綜合而成。(有興趣的讀者可參考 paper IV)
下面的影片(可選中文字幕)總結了以上的說明。在下一篇文章中,我們會來看看黑洞影像的「意料之內」與「意料之外」!
- Credits: Animation: Chris Jones; Screenplay: Smithsonian Astrophysical Observatory ;Narration: Alex Hanson; Funded by: National Science Foundation.
- 本文原刊載於作者網誌,原標題 人類史上首張黑洞近照:懶人包I
The post 人類史上首張黑洞近照:這張動員全球、沖洗兩年的照片是怎麼來的? appeared first on PanSci 泛科學.