Quantcast
Channel: 科學傳播 – PanSci 泛科學
Viewing all articles
Browse latest Browse all 1714

用我大數學的語言傳授幸運法則!? ── 《幸運的科學》書評

$
0
0

過年期間,我讀了這本《幸運的科學》。「裡面有提到貝氏定理(數學)。」朋友跟我說的時候,我還有點存疑,畢竟這書名怎麼看都有點像是那種、打著科學招牌,講一些科學「目前」還幫不上忙的領域。

讓我決定翻開的原因是作者之一 Barnaby Marsh 曾是哈佛大學、牛津大學的訪問學者,如今正在普林斯頓高等研究院訪問。前兩間是知名的大學,普林斯頓高等研究院更是當年匯集了馮·諾伊曼、愛因斯坦、奧本海默等留名青史學者的研究機構。

能訪問這些赫赫有名大學研究機構的學者所說的話,應該還蠻值得一看的吧?我的偏見這樣告訴我。

說到底,偏見也可以用機率來解釋:
如果今天只是一般人講幸運的科學,我們以為穿鑿附會的機率很高;但如果有像作者這樣的經歷,我們就下意識的認為可信度高一些,這是條件機率教我們的。

沒想到我翻開書讀起來,還真的有貝氏定理!

貝式定理。圖/Flickr

天助自助者,怎麼讓隨機事件成功機率增加?

格雷茨基在一九八〇年代與一九九〇年代先後四次奪得斯坦利盃 (Stanley Cup) 冠軍,創下至今無人能超越的得分紀錄。當他被問到如何打進這麼多球時,他永遠只有一個答案:「我滑到冰球會到的地方。」

這是一本有趣的書,作者用了兩三百頁的分量來解釋「天助自助者」、「趨吉避凶」這些我們自以為熟知,卻不太清楚該如何徹底落實在生活中的概念。其中有些重點精準的運用了「數學語言」來描述,讓讀者(至少我)更了解他想傳遞的概念。

比方說,成功或多或少都參雜了些機運,因此作者把成功定義為一個「隨機事件」。沒有人能控制隨機事件,無法讓隨機變成確定。

但透過兩件事,能讓成功更容易發生:

一、德蕾莎修女搭頭等艙事件 ── 增加成功機運

圖/wikipedia

「以照顧貧苦病痛之人為己任的修女,竟然也有想要追求享受的一面,是想在旅途中舒服些嗎?」書中提到德雷莎修女搭頭等艙這行為受到一些批評。

你可以想像,這件事如果在台灣鐵定會上報紙頭條,然後被媒體公審。我自己查了網路資料,有一說是德雷莎修女在搭飛機時,常會被航空公司自動升級到頭等艙。但其實德雷莎修女是為了尋求更多的募款機會,精準一點的說,是「尋求更多遇到有錢人的機會」。

沒人能保證一次募款能否成功,但修女利用搭頭等艙來增加遇見富人的機率,進而提升募款次數。用個熟悉的數學例子來說,就是你無法改變丟硬幣出現正面的機率,但你可以多丟幾次。

只是生活中很多情境不像丟銅板那麼簡單,無法輕易的增加嘗試次數。有時候增加嘗試次數需要過高的成本,不一定值得去做,例如買彩券;或者,「嘗試增加次數」本身就是一個隨機事件,就像募款的例子。你沒辦法說「1 個富人沒用,那我就來遇 10 個富人吧!」。只是寫 10 封 E-mail 可能也只是徒勞的嘗試,因為這些信件通常都不會被認真看待,還是得要面對面的交流;搭頭等艙雖然不保證能遇到富人,但至少比起在便利商店遇到要來得機率高。

募款成功的機率不能被改變,但遇到富人的機率可以被改變,而這連帶會影響到募款成功的次數,所以這便是值得去做的一件事。

至於為什麼遇到富人的機率可以被改變,這就牽扯到書中的第二個重點 ── 條件機率

二、嬰兒該不該和父母同床事件 ── 條件機率

我發現,即使是那些斷言一切都是命中注定、我們不可能改變的人,他們過馬路時仍然會注意兩邊來車。

圖/pixabay

書裡舉的例子是作者跟他太太在女兒出生時,曾經討論過要不要讓她跟她們一起睡。太太認為不妥,因為跟父母同睡的嬰兒發生意外的機率,是睡在嬰兒床上的 5 倍高,因為同床的嬰兒比較容易被悶住或被大人壓到 ── 但這是一般論的結果。

作者仔細研究後發現,許多意外是發生在父母喝醉、過度肥胖、教育程度不高的情況下(這邊作者沒有解釋清楚,但我想背後是指教育程度不高的父母,有相對高的比例會選擇不準備嬰兒床);另外,床鋪過軟、沙發、水床、過多的毛毯也都是問題。

作者根據自己家裡的情況考量後,發現他們與女兒同床的風險是低於千分之一的。

換句話說,以下兩種機率是相差很多的:

  1.  嬰兒跟父母同床發生意外的機率。
  2.  給定 king size 床,且夫妻各用一條單人被的條件下,嬰兒跟父母同床發生意外的機率。

再用我們習慣的骰子做例子:丟骰子出現六點的機率是 1/6,但相信很多人小時候(或現在依然是)丟骰子時,會刻意把六點的那一面朝上或朝下,因為我們不知怎麼地,以為這樣比較容易出現六點 ── 這就是試圖以增加條件,把機率變成條件機率,進而趨吉避凶。不過六點這面朝上,這個方法事實上可能沒什麼效就是了。

我們會刻意把六點的那一面朝上或朝下,試圖把機率變成條件機率,不過這個方法事實上可能沒什麼效。
圖/pixabay

說說其他例子:以前有一位老師跟我說:「大家都說:『創業成功的機率只有 5%,所以創業很難。』這是錯的。舉個極端一點的例子:可能是有 99% 的人缺乏某些特質,注定失敗,有 1% 的人怎麼創業都成功。重點不在成功的機率,而在於你有沒有具備哪些條件。」

平均的機率或統計有一定的代表意義,但在套到自己身上時都必須根據自身的條件重新去思考。反過來說,我們可以不斷增加各種條件,讓自己想實現的事件,變成機率值越來越高的條件機率。

作者對此有一個很漂亮的說法:有一個打敗機率的方法,就是將它們個人化。

再回到前面過馬路的例子來說,被車撞到是隨機事件,而過馬路前先左右張望,不也就是再增加條件,把它變成條件機率嗎?

要如何更幸運?

這本書有好幾個段落當讓我覺得很有趣:早就學過的機率知識,許多正面思考的書籍中常見的情境與道理,串在一起後卻讓人有種「原來還能從這個角度看啊」的新奇感,就好像看見老朋友不曾見過的那面一樣。

從這樣實用面來介紹條件機率,也比「給定出現的點數是奇數,求出現 3 點的機率是多少?」這樣的題目,更讓人有感、覺得數學好玩有用 …… 說到最後有點離題了。

本書的主旨是講如何更幸運,範圍非常廣泛,從工作、愛情、到育兒都講了。雖然這不是我的專長,但裡面的一些觀點卻讓我覺得有趣,或許也會放在心上,想找機會用用看(像是我個人很喜歡教養那邊,作者認為孩子需要的是「能辨認他們眼前所有可能導致快樂的途徑的能力」),雖然這都只是很個人主觀的看法而已。

不過如果對機率有興趣,想看看專家怎麼把機率與幸運做結合,相信書中前面的幾章,你應該會讀得蠻開心的。

圖/pixabay

The post 用我大數學的語言傳授幸運法則!? ── 《幸運的科學》書評 appeared first on PanSci 泛科學.


Viewing all articles
Browse latest Browse all 1714

Trending Articles



<script src="https://jsc.adskeeper.com/r/s/rssing.com.1596347.js" async> </script>