Quantcast
Channel: 科學傳播 – PanSci 泛科學
Viewing all 1714 articles
Browse latest View live

史上第一對經過基因編輯的嬰兒誕生了?面對 CRISPR技術,要討論的議題有哪些?

$
0
0

潘朵拉的魔盒被打開了!?

11 月 26 日早上 11 點,中國人民網廣州頻道發布了一則震驚世界的報導(原文已遭刪除),來自南方科技大學的研究者賀建奎宣稱,史上第一對經過基因編輯的嬰兒誕生了!這對嬰兒命名為露露和娜娜,研究團隊利用 CRISPR/Cas9 基因編輯技術修改了 CCR5 基因,使其天生免疫愛滋病。這項消息引發各界譁然,中外媒體迅速刊出相關報導,也令人特別注目接下來兩日於香港召開的第二屆國際人類基因組編輯峰會,與會的專家學者將會對於創造基因編輯嬰兒有何討論與回應?

  • 研究者本人在YouTube上面的聲明

而賀建奎原先任職的中國南方科技大學則撇清了關係,表示此人目前處於留職停薪的階段 (2018 年 2 月- 2021 年 1 月),此研究在校外進行,學校完全不知情。校方認為這項研究已嚴重違背了學術倫理,也宣布將立即組織獨立委員會進行深入調查。

CRISPR 是什麼?有那麼可怕嗎?

所以到底什麼是 CRISPR?為什麼賀建奎宣稱已將這項技術應用於人類胚胎的研究會引起學界嘩然?

CRISPR 在細菌裡扮演著免疫系統的角色,當細菌受到病毒感染時,Cas蛋白與 RNA 的組合可以精準辨識出外來的 DNA 並以切割的方式破壞病毒的遺傳資訊,讓病毒無法在細菌繼續肆虐。

CRISPR/Cas9 示意圖。圖/wiki

由此延伸出的 CRISPR/Cas9 基因編輯技術則運用了其精準切割基因位點的特性,得以對基因上特定的位置做出修改。目前這項技術已經運用於多種研究物種、農作物與家畜的身上,包括抗病毒的基因編輯豬、無角乳牛、低致敏性雞蛋等。目前亦有許多研究應用 CRISPR 研究人類疾病,包括用於確定遺傳因素、評估藥物或細胞治療的功效等,CRISPR 有助於我們更快速的了解人類疾病的癥結,並且找到治療方法。

  • 對於 CRISPR 想知道更詳細的內容在這裡

既然可以精準調整基因,實際將 CRISPR 用在人類身上進行治療,這是可行的嗎?

嘛,這就是本次事件大起譁然與爭議的所在了!國際原先對於 CRISPR/Cas9 技術的既有共識是:在現階段不應將此技術應用於人類身上。這個限制包括用以治療身患遺傳性疾病的病人;而此次事件若為真,則更遠遠跨出了治療的門檻,將之用於遺傳細胞並且影響了下一代。

而賀建奎宣稱使用了 CRISPR/Cas9 技術修改了人類胚胎的 CCR5(C-C chemokine receptor type 5)蛋白,這是 HIV 病毒感染人類的其中一種途徑:病毒欲進入T細胞時,病毒外膜之醣蛋白 GP120 除了與細胞膜上的 CD4 分子結合,也要與輔助受體 CCR5 結合才能使病毒外膜與細胞膜融合在一起,從而把病毒 RNA 送入細胞中。然而,有另一類型的 HIV 病毒,是利用輔助受體 CXCR4 來感染T細胞,因此編輯了 CCR5 基因的嬰兒,仍然可以被此種 HIV 病毒感染,並非他宣稱的「天生免疫於愛滋病」,這也是此研究引發爭議的另一個原因。

HIV 病毒感染細胞的示意圖。圖/wiki

修改人類基因的禁忌,尚未解決的倫理問題與爭議

目前的事件中,主要爭議包括對受試者以及未來對於人類社會的衝擊,可討論的面向非常多,以下僅為舉例說明:

受試者可能面臨的問題:

  1. 脫靶效應(off-target): CRISPR 為相對新穎的技術,使用有一定風險會造成其他基因病變,而這類基因突變的影響可大可小、難以預測。
  2. 改變目標基因是否能到到目標結果?
    即使沒有脫靶效應,目標基因改變本身亦可能造成其他副作用,以本次的案例中,CCR5 本身在免疫系統的功能被破壞,可能會有其他難以預測的後果,如更容易感染其他疾病等。現階段難以評估基因編輯是否利大於弊?
  3. 受試者很可能終其一生被當作實驗對象看待,面臨各式各樣定期檢查、各類測試、是否抗病毒的人體試驗等。

而即使在未來,基因編輯被接受應用於人類,仍有許多問題或界限將需要被釐清:

  1. 人類社會是否接受被編輯過的基因流入人類基因池,是否可能會出現其他副作用?但如限制受基因編輯者生育,這又將是另一種侵害人權。
  2. 降低基因多樣性:即使只是修改會致病的基因,但依照人類偏好做出的基因編輯,實際上很可能會降低人類的基因多樣性。
  3. 訂製嬰兒的爭議:相關技術短期內絕不可能普遍使用,如此將很可能擴大貧富差距、複製階級,甚至成為極權政府的戰爭武器
  4. 哪些基因可以修改、哪些不行?
    是否只修改遺傳疾病之基因就可以被接受? 治療疾病,與強化人體的界線在哪裡?外觀或智商呢?如果我們有更多的了解就可以進行基因編輯嗎?
  5. 使父母與子女,產生設計者與被設計者的新關係
    a. 帶有遺傳疾病的小孩,怪罪父母沒有使用基因編輯技術
    b. 帶有其他副作用的小孩,怪罪父母使用基因編輯技術
    c. 即使健康,仍可怪罪怎麼有或沒有修這個那個(ex.使否修成雙眼皮)
    d. 兄弟姊妹之中,有的人有編輯、有的人沒有編輯,怪罪父母不公平
    e. 家族社會施壓於父母是否於子女身上執行基因編輯

兩個沒有選擇權利的嬰兒,如何面對往後的人生?圖/pixabay

科學界怎麼看?

對此事件,CRISPR 技術的共同發展人──珍妮佛‧道納(Jennifer A. Doudna)發表了聲明,認為從事這項實驗的研究者必須充分解釋他們為何要破壞這前述的國際共識。

她同時認為,大眾需要知道:

  1. 這一份報告並沒有發表在同儕審查的期刊上
  2. 由於資料沒有發表被審查過,我們無法判斷這個基因編輯過程的真實性
  3. 這此消息凸顯了一個迫切的需要:我們應當規範 CRISPR 在人類胚胎上的使用,唯有在醫療需求出現且沒有其他治療方法時,才將其作為最後手段。

道納希望這次的消息不會影響臨床上正在進行的努力,也認為我們應繼續公開、透明地進行 CRISPR 的相關討論。

另一方面,針對這次賀建奎所聲稱的研究結果,中國科學界發表了嚴厲的譴責,共有 122 位科學家在「知識份子」的微博上發表了聯合聲明,他們認為「這項所謂研究的生物醫學倫理審查形同虛設」,同時它所造成的風險無法估量,也對於堅守道德的學者們極不公平。作為生物醫學科研工作者,這些科學家聯名表示:「堅決反對」、「強烈譴責」。

賀建奎原訂於本周三(2018/11/28)在香港第二屆國際人類基因組編輯峰會上發表演說。在峰會發表的官方回應,看不出來賀建奎的出席是否會受到任何影響。峰會官方表示,美國國家學院曾訂定框架,認為唯有在了解潛在風險、沒有替代方案的狀況下,才有可能經由嚴格監督去進行臨床試驗。然而,目前無法確定賀建奎的研究是否符合框架。峰會希望在會上的討論能夠幫助大眾更加了解基因編輯的相關技術,而他們的目標,是確保科學家能負責任地進行基因編輯組研究,以造福整體社會。

根據主辦單位議程安排,11月28日11:30 賀建奎將上台發表演說。圖/官網

而在經過同儕檢視之前,我們也尚無可靠的證據說明這項研究是否確實做到了賀建奎所宣稱的內容。基因編輯技術到底到了哪一步?人類應該如何在哪裡劃下界線?這些界線已經被跨過了嗎?

且讓我們繼續看下去。

 

後續進度:賀建奎現身第二屆國際人類基因組編輯峰會,他回答了哪些問題?

The post 史上第一對經過基因編輯的嬰兒誕生了?面對 CRISPR技術,要討論的議題有哪些? appeared first on PanSci 泛科學.


助聽器是尊貴的象徵?從聲學椅到聲學拐杖,為了聽清楚的怪招式還真多

$
0
0
  • 作者/楊又臻│雅文兒童聽語文教基金會研究助理

今 (2018) 年四月上映了一部電影《噤界》(A Quiet Place)。有個貫穿整部電影的情節,就是爸爸總是埋頭在地下室工作,堅持替女兒製作助聽設備。

聽力損失者最常使用的助聽設備是助聽器,那助聽器到底是怎麼做出來的?自己可以 DIY 做一個嗎?而這些助聽設備又是從什麼時候開始幫助人們聽得更清楚呢?讓我們把鏡頭拉回到 500 年前,一起回顧一些關於助聽設備發展的小故事吧!

其實,使用電池的助聽器是近代的產物,不過我們很早就知道,如果想要把聲音聽得清楚,只要把手併攏放在耳後,就可以幫助我們集中擴大聲音。最初的助聽設備則可以追溯至 16 世紀。早在 1588 年,Giovanni Porta 在其《Magia Naturalis》一書中即描述了由木頭製成的,動物耳朵形狀的集音裝置。

而到了 17 世紀,人們為了把聲音聽清楚,Ear trumpet 便誕生了!我們暫且叫它耳喇叭好了,顧名思義它就是長得像喇叭的手持工具,使用方式也很簡單,就是把喇叭放到耳邊以便將聲音聽清楚,不過這類型的裝置當時很難大量生產,所以只能訂製。

到了 18 世紀末,耳喇叭越來越普及,也開始出現了客製化可摺疊式的耳喇叭。第一家生產耳喇叭的公司在 1800 年於倫敦開始營業。雖然這間公司生產的助聽設備仍是非電力的,但此時的耳喇叭已經不用手持,而是可以簡單掛在頭上接收聲音了。

圖片來源│wikipedia

助聽設備是優雅尊貴的象徵!?

約莫 1810 年代,聲學椅 (Acoustic Chairs) 的發明,讓「優雅地聽」這件事情變得受到皇室成員歡迎,其中一個聲學椅的設計是這樣的:靠近扶手的地方有兩個開口,被雕刻成動物頭的樣子,椅背上靠近耳朵的部位,則連接著一根管子,皇室成員可以坐在椅子上輕輕將管子靠近耳朵,即可聽見跪於扶手開口處晉見者說的話。

於此同時,另外一張聲學椅聽的聲音就多了。這張聲學椅的設計類似現在常見的高背單人沙發,但在椅子的左右兩側有喇叭形狀的裝置,所以只要坐在椅子上,就可以聽到從喇叭接收進來不限單一對象的聲音。因此,和人對話時不需要靠得很近就能接收聲音,讓聽話者簡單優雅之餘,也可以避免說話者的口臭,以免「聲音被說話者的呼吸污染」(笑)。

時間推進到 1870 年代,愛爾蘭一位名為 McKeown 的醫生把聲學椅變得輕巧可攜帶,同時靠近耳朵的部份也變得較為柔軟。由圖中可以發現,這款聲學椅其實是沙攤椅的造型搭配兩個集音喇叭。

保守你的秘密──看不出來的助聽器

19 世紀的聽損者開始想要隱藏自己聽得不好的狀況,就如同《Helps to hear》這本介紹耳朵解剖學、聲音性質及當時聽力設備的書中提到:

一般而言,聽損者對自己的缺損非常敏感,不喜歡顯眼的助聽設備、或讓人注意到自己有聽損;因此,許多助聽設備在發明時,都盡可能地避免突顯聽損的事實。
The deaf are, as a general rule, very sensitive over their infirmity, and hence dislike any instrument which is conspicuous, or makes this condition more apparent; for this reason many other devices have been invented, which seek to conceal this fact, as much as possible . . .

— James A. Campbell, M.D., 1882

正因「聽不清楚」這件事情變得隱諱,助聽設備發明的方向也開始有了轉變,一些造型特殊的助聽產品應運而生。

例如 Hair Receptor 是一種專為女性設計的設備。這款頭戴式的助聽設備很像帽子,左邊的開口處是接收聲音的位置,連接至耳朵的管子則藏在頭髮底下。而 Beard Receptacle 則是專為聽損男性設計,它的造型讓男性便於將助聽設備隱藏在鬍子下方,收音位置則位於中間開口處。它的兩側有隱藏的管子接往耳朵,這根管子除了有彈性、可以適應不同的臉型,還有雙耳聽覺的效果呢!

Hair Receptor(左)、Beard Receptacle(右)
圖片來源│Deafness in Disguise:Concealed Hearing Devices of the 19th Century

特殊造型的助聽設備也包括聲學拐杖 (Acoustic Cane),它可以拿起來靠近耳朵當喇叭。細細的部份連接至耳朵,拐杖扶手處則是聲音的接收器。

然而不管是耳喇叭、聲學椅,亦或是各種造型特殊的非電力聲音放大工具,僅能輔助較輕程度的聽力損失 (Hearing Loss),一直到使用電力的助聽設備被發明,助聽設備才真正進入到重度至極重度聽損者可以受益的範圍。(延伸閱讀:如果小美人魚失去的是聽力,幸福也沒有比較容易:談輕微聽力損失「微聽損」

使用電力的助聽器

1870 年代起,隨著第二次工業革命的腳步,助聽器的發展也走入使用電力的時代。

藉著貝爾 (Alexander Graham Bell) 發明電話的技術,電與碳粒子麥克風 (carbon-granule microphone) 組合的助聽器產生的聲音,比起前面介紹的幾種設備集中放大聲音來得更大聲。但由於放大率仍然有限且容易失真,這種助聽器對中度聽損者僅有些許益處。撇開失真及效果有限不說,受限於當時的技術,這些助聽器體積龐大而且只能放在桌上無法隨身攜帶。

據信在 1892 年在美國申請專利的這一個助聽器「Magneto-Telephone for Personal Wear」,是史上第一個使用電力的攜帶型助聽設備。這個助聽器的設計看起來已有現代助聽器的雛型,但可惜的是這項設備沒有正式生產過。

進入 20 世紀後,助聽器的發展更是飛快,外觀也逐漸變得輕巧可攜帶,其中的演變關鍵在於助聽器在幾個時間點運用了當時新發明的科技。1923 年真空管助聽器 (vacuum tube hearing aids ) 的發明,使得助聽設備從碳粒子助聽器放大聲音演變為真空管放大,聲音也比早前更為響亮。

在接收聲音的部份,1920 年代後含有永久電荷的駐極體麥克風技術 (electret/FET microphone) 開始應用在所有助聽器接收聲音的功能。此一技術除了提高電力的使用效率,也讓聲音接收器與放大麥克風可以放在同一個盒子中,使助聽器的體積變得更小。對於助聽器體積通常較大的重至極重度聽損者來說,這項應用更是一大福音。

再經過了 11 年,1934 年時助聽器更升級為電池供電。1950 年代真空管助聽器開始被電晶體助聽器 (transistor hearing aids) 取代,這樣的進步促使了耳掛式助聽器 (behind-the-ear,BTE) 的發展。1970 年代開始,助聽器的外觀已經類似於現代常見的樣子。

而如今,助聽器有著各式各樣的款式,其中最常見的類型就是耳掛式助聽器、耳內式助聽器 (in-the-ear,ITE)、耳道式助聽器 (in- the-canal,ITC)、深耳道式助聽器 (completely-in-the-canal,CIC)、骨傳導助聽器 (bone conduction)、CROS 助聽器……等。

重塑鏡中之我:助聽器使用的反轉

倘若聽損者消極處理聽力損失問題的話,對身體健康 (Lin & Ferrucci,2012; Lin et al., 2013)、情緒和心理健康 (National Council on the Aging, 1999)、社交能力 (Monzan et al., 2008)、家庭關係 (Wallhagen et al., 2004)和自尊 (Bess et al., 1998) 以及工作及學校表現都會產生影響 (Anderson & Matkin, 2007; The Ear Foundation, 2015; Bess et al., 1998; Porter, Sladen, Ampah, Rothpletz & Bess, 2013; Bess et al.,2014;Bess & Hornsby,2015)。

儘管助聽設備的科技一直在進步,但直到今 (2018) 年 5 月美國聽損協會 (Hearing Loss Association of America) 的調查報告仍指出,一個成人從開始認為自己可能有聽力損失,到去尋求協助和治療,平均來說大約需要七年的時間 (HLAA, 2018)。可以想見,過去相當長的一段時間,聽損者往往會透過 19 世紀末的負面觀感來想像使用助聽器時所遭受的眼光,猜測社會鏡子的另一面仍否負面地評價自己,從而影響了他們使用助聽器的意願。

所幸,在 2013 年發表於美國聽力學會期刊 ( Journal of the American Academy of Audiology) 的一篇研究顯示,一般人看到助聽器使用者時給予的評價,已由 1977-1990 年間的負面評價,扭轉為正面評價 (Rauterkus, E. P., & Palmer, C. V., 2014)。

這項研究是這樣做的,研究者 Rauterkus & Palmer 邀請 24 名成年人,觀看 5 張 15 至 17 歲青少年配戴各種耳部科技產品的圖片,然後用李克特 7 點量表 (7-point Likert scale),在 8 個描述感覺的向度上(有吸引力/無吸引力;年輕/年長;成功/不成功;勤勞/怠惰;可靠/不可靠;聰明/不聰明;友善/不友善;學歷高/學歷低),評估自己對圖片中人物的感覺。圖中的耳部科技產品包括以下類型:標準尺寸的耳掛式助聽器、開放式助聽器 (open fits)、深耳道式助聽器、入耳式耳機 (earbuds)、藍牙耳機。

研究結果顯示,多數看圖片的人認為,配戴深耳道式助聽器的人,看起來比使用入耳式耳機的人年長;而配戴標準尺寸耳掛式助聽器的人,看起來比使用藍牙耳機的人更值得信賴 (Rauterkus, E. P., & Palmer, C. V., 2014)。或許我們可以這麼說,使用助聽器在旁人眼中看起來,非但沒有惡評,反而讓人有股信賴感油然而生呢!

這麼看來,或許是因為現今人們戴在耳朵上的科技產品樣式愈來愈多,社會觀感已經改變,人們對配戴助聽器者已不再持有偏見。助聽器已然蛻變為幫助聽損者改善生活品質的最佳利器。

其實助聽設備對於聽損者來說不僅僅是協助他們聽到、聽得清楚的工具,同時也改善了聽損者的生活品質。特別是年幼的聽損者,不論是聽損程度較輕的微聽損(包含輕型聽損、單側聽損及高頻聽損)至極重度聽損,正值學習語言及各項發展階段的孩子,有了助聽設備提供清晰的語音,方能讓他們在學習時減少一些因為聽力不佳帶來的阻礙。另一方面,年長者也因有了助聽設備的輔助,減緩腦部的老化速度、維持社交活動,除了改善因聽力狀況帶來的問題,也提升生活品質。

自己手做一個助聽器到底可不可行啊?

回到最開始的話題,我們到底可不可以自製助聽器啊?

看到這邊,其實答案應該很清楚了,如果沒有聽損問題,我們大可以直接拿起手邊的紙張捲成喇叭的樣子,就可以像 400 年前的人們一樣放大聲音。而真正能幫助聽損者的助聽器,則需要由專業人員選配。

一般情況下需由醫院耳鼻喉科醫師及聽力師做完整的聽力檢查,再帶著醫院的聽力檢查報告至助聽器公司,由聽力師和選配師協助選擇適合的助聽器型號,並進行設定及驗配。

延伸閱讀

參考文獻

  • Anderson, K. & Matkin, N. (1991, 2007 revised). Relationship of degree of longterm hearing loss to psychosocial impact and educational needs. 
  • Bess, F. H., Dodd-Murphy, J., & Parker, R. A. (1998). Children with minimal sensorineural hearing loss: prevalence, educational performance, and functional status. Ear and hearing, 19(5), 339-354.
  • Bess, F. H., Gustafson, S. J., & Hornsby, B. W. (2014). How hard can it be to listen? Fatigue in school-age children with hearing loss. Journal of Educational Audiology, 20, 1-14.
  • Bess, F. H., & Hornsby, B. W. (2015). The complexities of fatigue in children with hearing loss. SIG 9 Perspectives on Hearing and Hearing Disorders in Childhood, 24(2), 25-39.
  • Campbell, J. A. (1882). Helps to hear. Duncan.
  • Ear_trumpet. (2018, July 7). In Wikipedia, the free encyclopedia. Retrieved September 25, 2018
  • Electret_microphone. (2018, June 13). In Wikipedia, the free encyclopedia. Retrieved September 25, 2018, from https://en.wikipedia.org/wiki/Electret_microphone#History
  • hearingdirect.com. (n.d.). The History of Hearing Aids. Retrieved September 25, 2018
  • Hearing Loss Association of America. (2018). Hearing loss facts & statistics [PDF]
  • Lin, F. R., Yaffe, K., Xia, J., Xue, O-L., Harris, T. B., Purchase-Helzner, E., Satterfield, S., Ayonayon, H. N., Ferrucci, L., & Simonsick, E. M. (2013). Hearing loss and cognitive decline among older adults. JAMA Intern Med, 173(4), 293-299.
  • Monzani, D., Galeazzi, G. M., Genovese, E., Marrara, A., Martini, A. (2008). Psychological profile and social behaviour of working adults with mild or moderate hearing loss. Acta Otorhinolaryngologica Italica, 28(2), 61-66.
  • National Council of Aging, Seniors Research Group. (1999). The consequences of untreated hearing loss.  
  • Porter, H., Sladen, D. P., Ampah, S. B., Rothpletz, A., & Bess, F. H. (2013). Developmental outcomes in early school-age children with minimal hearing loss. American Journal of Audiology, 22(2), 263-270.
  • Rauterkus, E. P., & Palmer, C. V. (2014). The hearing aid effect in 2013. Journal of the American Academy of Audiology, 25(9), 893-903.
  • The Ear Foundation (2015). Experiences of young people with mild to moderate hearing loss: Views of parents and teachers. The Ear Foundation report to NDCS: Mild-moderate hearing loss in children.
  • Wallhagen, M.I., Strawbridge, W. J., Shema, S. J., Kaplan, G. A. (2004). Impact of self-assessed hearing loss on a spouse: A longitudinal analysis of couples. Journal of Gerontology: Social Sciences, 59B(3), S190-S196.
  • washington university school of medicine. (n.d.). Concealed Hearing Devices of the 19th Century. Retrieved September 25, 2018, from
  • washington university school of medicine. (n.d.). Concealed Hearing Devices of the 20th Century. Retrieved September 25, 2018, from
  • 永欣聽力保健中心. (n.d.). 認識助聽器. Retrieved September 25, 2018
  • 奧迪康助聽器. (n.d.). 助聽器發展史. Retrieved September 25, 2018

The post 助聽器是尊貴的象徵?從聲學椅到聲學拐杖,為了聽清楚的怪招式還真多 appeared first on PanSci 泛科學.

基因研究大明星「CRISPR 基因編輯技術」的現在與未來在哪裡?

$
0
0
  • 文/ 陳淵銓 、 李慧芳

圖/qimono @Pixabay

基因編輯技術 CRISPR 的原理

CRISPR(clustered regularly interspaced short palindromic repeat)是一種細菌對抗外來質體(plasmid)或噬菌體(phage)的後天免疫系統(adaptive immunity),細菌會對曾侵入的 DNA 產生記憶,當序列相同的 DNA 再次進入細菌時,會產生免疫反應以分解此外來的 DNA。外來的DNA 首次進入細菌後並未完全被分解,經加工後可嵌入細菌基因體中,稱為 CRISPR 陣列(array),此特殊區段能夠轉錄合成 mRNA(messenger RNA),而菌體中具切割 DNA 活性的蛋白質則會利用 mRNA 片段去辨認互補性的 DNA 片段,並切除符合序列的標的物(圖 1,Barrangou 2010,Church 2013)。

圖 1 :CRISPR 的作用模式:小型導引 RNA(small-guiding RNA, sgRNA)辨認特定的 DNA 序列後,結合的 CRISPR associated protein 9(Cas9)蛋白會裁切在 DNA 正反兩股的 Protospacer adjacent motif(PAM)NGG 上游各 3 個核苷酸的位置,形成鈍端的雙股斷。 圖/本研究整理。

基因編譯技術目前的優點及困難

CRISPR 廣泛受到基因編譯相關研究人員的採用,主因是具有下列優點:

(1) 無物種限制:動物、植物及微生物均適用此技術進行基因編譯;
(2) 簡單:基因標靶點(target site)搜尋容易,且 DNA 正反兩股皆可設計,質體構築失敗率低,Cas9 蛋白辨識效率高;
(3) 準確:利用 RNA 與 DNA 互補性鹼基配對的原理(complementary base pairing),sgRNA 可以正確的辨認標的 DNA 序列;
(4) 迅速:使用 CRISPR 技術僅需合成特定序列的 DNA 或 RNA,較製造重組蛋白更為穩定且有效率;
(5) 便宜:製作材料僅有引子(primer)、質體及簡單的酵素,所需成本較傳統方法為低。

CRISPR 雖具有很多優點,但仍有下列困難:
(1) 脫靶(off target)效應:未必能完全正確的裁切在標的位置,比率高低很難估計,成品的篩選(screening)及驗證(verification)程序是必要的;
(2) 傳遞工具(delivery tool)的選擇:通常採用病毒、電衝擊(electroporation)、脂質(lipoid)或奈米粒子(nanoparticle)作為傳遞方法,而傳遞成功率攸關作用效能,工具的選擇及效能驗證非常重要。

從基礎研究到生產工具的應用

CRISPR 應用範圍相當廣泛,目前此技術已付諸實際應用或有潛力運用的項目如下:

(一)基礎研究的工具

CRISPR 作為執行動物、植物、微生物基因編譯或基因體分析的技術,過去數年已有很多相關文獻發表(Church 2013,Zhang 2014),是目前最成功且最廣泛的應用,有一些生技公司使用此技術製作轉殖動物、植物及微生物,或者執行人類基因體的分析(Contreras and Sherkow 2017)。

(二)輔助工具的發展

使用 CRISPR 進行研究時所須使用的試劑和周邊設備包括成套工具組(如Surveyor mutation detection kit)、鑑別酵素(如mismatch-specific DNA endonuclease)、次世代定序分析(如next generation sequencing)等,近年開發和銷售這些輔助工具的廠商已如雨後春筍般成立(Contreras and Sherkow 2017)。

(三)生產農工業產品或作為醫療的方法

開發農工業產品、藥品、治療及診斷方法是 CRISPR 最重要的應用,相關產品的預期利益亦最為豐厚,特別是人體治療,目前已有多種農工業產品進入商業化生產,醫療用品則大多仍在研究或臨床試驗階段,真正實際運用到人體者很少(Contreras and Sherkow 2017)。

CRISPR 技術轉移、智慧財產權及應用的現況

CRISPR 在先進國家研究成果豐碩,專利與證照的申請案逐年增加,藥廠與生技公司紛紛運用此技術生產產品,相關產業發展迅速,規模越來越大。以下以美國為例,說明 CRISPR 在技術轉移、智慧財產權及應用的現況(圖 2):

(一)專利與證照

美國麻省理工學院 Broad 實驗室的張峰(Feng Zhang)和加州大學柏克萊分校的珍妮佛 ‧ 杜德納(Jennifer Anne Doudna)是 CRISPR 專利爭奪戰兩個團隊的領導人物。自 2013 年 3 月 16 日起,美國新專利法從「先發明制(First to invent)」改採「先申請制(First inventor to file)」制,並修改專利法,以歷程調查程序(Derivation proceeding)取代專利衝突程序(Interference proceeding)。

杜德納團隊於 2013 年 3 月 15 日提出申請,而張峰團隊於 2013 年 10 月 15 日提出申請,但花費大筆經費使用優先審查服務,因此早於杜德納團隊,於 2014 年 4 月便獲得了美國專利局核准專利。目前此案仍在上訴處理中,專利歸屬仍有爭議,但預期爭議各方會有妥協的趨勢,可能會結束某些專利權而最終進行證照交換(cross license)(Cohen 2017)。

現今在美國從事 CRISPR 技術轉移的公司或機構,較著名的包括 Broad Institute、Editas Medicine、Caribou Biosciences、Intellia Therapeutics、ERS Genomics 及 CRISPR Therapeutics,其發展方向各異,但共同特徵是均為代理人(surrogate)且與專利持有者關係密切,通常只進行技術轉移,實際的生產銷售則由規模更大的藥廠或生技公司負責。對於一般性應用則通常採取非獨家的技術轉移及授權,如研究工具、農工產品、實驗動物或藥品開發等,但涉及人體治療的部分,則通常採取獨家的技術轉移及授權(Cohen 2017)。

(二)CRISPR 企業的成立

CRISPR 的發展已成功創造出新產業,造就許多 CRISPR 公司的成立(the birth of CRISPR Inc.)。

此技術首先在食品畜牧業開創出一片天地,案例如:1. 成功開發可抵抗噬菌體攻擊的乳酸生產菌株,大幅提升乳製品的產能,例如優格(yogurt)和乳酪(cheese)的生產。2. 應用於編譯動、植物或微生物基因以產出所需特性的家畜、農作物或商業化生產酵素,或是進一步製作基因轉殖動物,作為研究疾病及開發藥物的動物模式(animal model)。

生技醫療方面,鐮刀型貧血症、地中海型貧血症、裘馨氏肌肉失養症和囊腫性纖維化等,遺傳性疾病的基因治療都已在研究中或進入臨床試驗階段;更有藉此製作誘導性多功能幹細胞(induced pluripotent stem cells, iPS)和嵌合抗原接受體 T 細胞(chimeric antigen receptor T cells, CART)用於細胞、基因或免疫治療者(Cohen 2017)。其中,諾華(Novartis)的 CART 療法Kymriah(tisagenlecleucel)用於治療復發性和難治性 B 細胞急性白血病的 25 歲以下患者,是美國食品藥物管理局(US FDA)所核准上市的第一個基因療法。

(點擊圖片可放大)圖 2 :美國的 CRISPR 技術轉移相關的公司、智慧財產權持有者及應用(引用 The Birth of CRISPR Inc. Science, 17 Feb. 2017; 355(6326):683) 圖/本研究整理

在美國,CRISPR 發展與日精進;應用範圍漸廣,使專利申請十分踴躍,但獨家的技術轉移及證照授權,引發了智慧財產權持有者與各大藥廠、生技公司的商業利益競逐。自從此技術變成一門生意(business)之後,確實為美國社會帶來爭論甚至撕裂,與 CRISPR 技術相關的智慧財產權、學術榮譽、個人利益、忠誠、自我期許、地域及媒體版面等等議題,都浮上了辯論臺。當然,還有獲得諾貝爾獎的夢想(Cohen 2017)。

前景看好

CRISPR 的發展十分快速,具體可應用項目持續開展中,前景十分看好,尤其是下列三個面向,不僅業界大有可為,更可成為國家發展的推力:

(一)技術創新

CRISPR 可以加速問題的解決,如縮短基因轉殖動、植物產生的時程;更有潛力解決以往無法解決的問題,如治療病毒潛伏性感染及遺傳性疾病等。為促進生物科技的創新,與國際發展並駕齊驅,政府應制定政策鼓勵相關技術的研發。

(二)產業發展

CRISPR 應用於農工業及醫藥業,可加速產品研發的進度,增加企業的生產效率與獲利。為促進產業的升級與產學合作,政府應建立產官學界合作的管道和交流的平台,使得 CRISPR 的相關技術能從實驗室研究進入產業應用階段,加速實證醫學(translational medicine)的發展,並扶持相關產業的建立。

(三)精準治療(Precision medicine)

CRISPR 可運用於高度專一性和客製化的細胞和基因治療(cell and gene therapy),例如 iPS 細胞和 CART 細胞(圖 2,Cohen J. 2017)的製作,即在精準治療上扮演關鍵性的角色。為符合個別病人的需求,政府可擬定新政策配合,創造一個生物經濟(bioeconomics)體系和建立因應個體差異的人體生物資訊資料庫。

可能面臨的爭議與挑戰:社會、法律及倫理的層面

CRISPR 技術無疑為基因編輯帶來更多的可能性,但人類若藉此打造「理想生命」或追求「長生不老」,是否會造成問題? 圖/達文西《維特魯威人》 via wikipedia

CRISPR 已在生態、環境、風險評估及基因編譯的事務上引發了一些安全議題,我們有必要就社會、法律及倫理的層面上,作政策面的公共事務溝通,以下問題是最為大家所關切的:

(一)利益和風險的平衡(Balance of benefits and risks)

CRISPR 應用於基因編譯雖有無物種限制、簡單、準確、迅速及便宜的優點,但仍有脫靶或傳遞工具的問題,例如:脫靶可能會造成有害的突變,傳遞工具則可能具有毒性或成本很高。考量利益需評估相對之風險,以確保利益高於風險,但實務面上利益和風險評估之複雜性極高,需要利益相關者的擴大參與(Nicol etc. 2017,Rodriguez 2016)。況且各方立場及觀點往往不一,要達成平衡並不容易,須仰賴眾人建立一個科學性的利益和風險評估機制。

(二)個人利益及公共利益之兼顧(Compatibility of private interests and the public good)

張峰和珍妮佛 ‧ 杜德納在美國的專利爭奪戰引起了 CRISPR 的專利權及商業應用爭議,目前看來,大有個人利益凌駕公共利益之勢。為確保公共利益,獨家的技術轉移及授權的範圍應縮小,並增加創造發明此新技術的機構彼此間的競爭關係(Cohen 2017,Contreras and Sherkow 2017)。另一方面,技術開發者(專利持有者)與證照持有者(生產銷售者),應達成雙方協議,並制定相關專利法規,規定權利保護的時程與範圍,以增加創造發明的誘因;提高生產銷售的利潤;與保障商業利益,但應有相對義務之規定以兼顧公共利益。

(三)隨意改造基因(Random manipulation of genes)

任意編譯動物、植物及微生物基因可能會造成環境汙染和生態浩劫,最近科學家更首度成功利用CRISPR 有效的改變人類胚胎的 DNA(Sheron Begley, 2017),若任意改造人類基因體則可能會有人造人、複製人、甚至長生不老人的出現。為避免破壞環境生態和引發人類倫理危機,應用之範圍及目的須有妥善之政策規劃及法規規範,必要時應有適當的限制。

(四)人體治療商業化(Commercialization of human therapy)

CRISPR 運用在人體治療已有相當進展,近來在治療病毒潛伏性感染(如人類後天免疫不全病毒、疱疹病毒、人類乳突病毒和 B 型肝炎病毒等)、遺傳性疾病(Cohen 2017)及神經退化性疾病(如阿茲海默症、亨丁頓舞蹈症和帕金森氏症等)(Kim 2017,Li 2016)的研究上都有突破,亦相當有潛力運用在抗癌藥的研發。若這項技術可以成功運用在人類臨床治療,將有深遠的影響並帶來重大的價值。但這些疾病的療程通常耗時且費用龐大,若無管控,商業化恐在所難免。醫療人權乃普世價值,治療不應成為某些特定人的特權,政府對非歸因於己的基因治療需求者,應有適當之保險給付,並盡量降低基因治療之成本,配合合理的付費制度,以公正分配醫療資源。

臺灣的發展現況

在台灣,已有很多實驗室使用 CRISPR 作為研究工具,如製作幹細胞、基因轉殖動植物、微生物基因改造及藥品開發等,或者研究 CRISPR 引發的免疫反應,相當廣泛地用於基礎研究,並已有成果發表於學術性期刊或研討會論文、報告。在相關產業面則仍在起步階段,雖已有公司實際利用此技術從事研發和生產製造,但大多企業為代理商。

我國目前已有專利法作為專利申請的規範,有些學校或研究機關亦設有技術轉移單位,但參考國外專利申請之爭議,有關 CRISPR 的專利申請及證照持有,仍應明確規範申請流程,以鼓勵創造發明,並避免利益衝突(conflict of interest)。

近來政府及民間研究機關已投入不少經費於 CRISPR 相關的研究,例如:近 5 年科技部通過的 CRISPR 相關專題研究案及規劃推動案已有 39 件,領域涵蓋生物科學、自然科學及工程技術,核准經費總金額已超過新台幣 1 億 6 千萬元。我們團隊近來曾訪談過國內 CRISPR 相關研究人員,發現他們現階段面臨的挑戰如下表:

上表乃本團隊實地訪談後之研究整理。

CRISPR 前景看好,臺灣準備好了嗎?

CRISPR 是基因編譯的革命性發現,可快速而準確的改造標的物的基因序列,已開啟新的基因體研究世代。在國外,CRISPR 技術除已廣泛用於基礎研究外,並逐漸應用於生產農工業產品及人體治療上,不少生技公司和藥廠陸續投入研發和生產相關產品以搶食這塊商業大餅,相關產業正蓬勃發展。在台灣,CRISPR 技術主要用作為基礎研究工具,相關產業則尚在萌芽階段;儘管如此,我們預期 CRISPR 相關產業在不久的將來在台灣仍會迅速發展,並有促進產業的創新與升級之潛力。

雖然 CRISPR 在國內的發展有不少困難和挑戰待克服,相關政策亦仍在擬定中或法規仍在草案階段(如細胞與基因治療產品管理法草案),但綜觀國際科技發展趨勢,CRISPR 前景十分看好。解決技術上的困難需要發展新技術或改進原來的技術,可促進科學的進步;解決專利與證照的挑戰則有賴制定更完善的法規和政策。討論倫理問題絕非阻礙科學進步,而是一種未雨綢繆,著重解決未來可能發生的問題,對於科技發展的利弊得失及造成的衝擊進行多方面的探討,會使政策的規劃更為周延,亦有利於科技的長期良性發展。

目前我們團隊正在盤點國家投入於 CRISPR 研究過程中所發現新觀念及新技術,如利用 CRISPR 作為未來研究精準治療的疾病模式等。期許我國的研究人員在從事研究的同時,不但能解決技術創新瓶頸,甚至連專利證照申請及衍生的倫理問題都能一併考量,確實因應 CRISPR 的創新發展和國際潮流趨勢,開創美好前景(圖 3)。

圖 3 :CRISPR 的研發、應用及政策規劃。 圖/本研究整理。

參考文獻:

  • Basu S, Adams L, Guhathakurta S, Kim YS. (2017). A novel tool for monitoring endogenous alpha-synuclein transcription by NanoLuciferase tag insertion at the 3’end using CRISPR-Cas9 genome editing technique. Scientific report. 4 Apr. 2017; 7:45883.
  • Contreras J. L. and Sherkow, J. S. (2017). CRISPR, Surrogate Licensing, and Scientific Discovery. Science, 17 Feb. 2017; 355(6326):698-700
  • Cohen J. (2017).The Birth of CRISPR Inc. Science, 17 Feb. 2017; 355(6326):680-684
  • DiCarlo J. E., Norville J. E., Mali P., Rios X., Aach J., Church G.M. (2013). Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Research. Apr. 2013; 41(7):4336-4343.
  • Horvath P. and Barrangou R. (2010). CRISPR/Cas, the immune system of bacteria and archaea. Science, 8 Jan. 2010; 327(5962):167-170.
  • Mali P., Yang L., Esvelt K.M., Aach J., Guell M., DiCarlo J.E., Norville J.E., Church G.M. (2013). RNA-guided human genome engineering via Cas9. Science, 15 Feb. 2013; 339(6121):823-826.
  • Nicol D, Eckstein L, Morrison M, Sherkow JS, Otlowski M, Whitton T, Bubela T, Burdon KP, Chalmers D, Chan S, Charlesworth J, Critchley C, Crossley M, de Lacey S, Dickinson JL, Hewitt AW, Kamens J, Kato K, Kleiderman E, Kodama S, Liddicoat J, Mackey DA, Newson AJ, Nielsen J, Wagner JK, McWhirter RE. (2017). Key challenges in bringing CRISPR-mediated somatic cell therapy into the clinic. Genome Medicine. 2017; 9:85.
  • Rodriguez E. (2016). Ethical Issues in Genome Editing using Crispr/Cas9 System. Journal of Clinical Research & Bioethics. March 24, 2016; 7:2
  • Shalem O., Sanjana N.E., Hartenian E., Shi X., Scott D.A., Mikkelsen T.S., Heckl D., Ebert B.L., Root D.E., Doench J.G., Zhang F. (2014). Genome-scale CRISPR-Cas9 knockout screening in human cells. Science, 3 Jan. 2014; 343(6166):84-87
  • Sheron Begley. (2017). First Human Embryos Edited in the U.S., Scientists Say. Scientific American, 27 July 2017.
  • Yang W, Tu Z, Sun Q, Li XJ. (2017). CRISPR/Cas9: Implications for Modeling and Therapy of Neurodegenerative Diseases. Frontier Molecular Neuroscience. 28 Apr. 2016; 9:30.

The post 基因研究大明星「CRISPR 基因編輯技術」的現在與未來在哪裡? appeared first on PanSci 泛科學.

物質世界和生活問題的解答,都藏在低溫世界!──專訪中研院物理所陳洋元

$
0
0

本文轉載自中央研究院研之有物,泛科學為宣傳推廣執行單位

  • 採訪編輯|廖英凱、美術編輯|張語辰

為什麼要研究「低溫物理」?

低溫領域不只是比較冷的世界而已,接近絕對零度的低溫,可以讓科學家觀察到電子的特性而了解物質世界。而將液態氮用於工程與生物,更能設計出能解決湧水地質工程難題的解法、與對生態無毒無害的紅火蟻防治方法。

中研院物理所的陳洋元研究員,絕招像是《ONE PIECE》漫畫中,青雉的冷冷果實能力。從打造臺灣第一台低溫比熱系統開始、配合稀冷機,為低溫物理研究奠定了良好環境,更利用低溫的特性解決生活問題。
攝影│廖英凱

冰凍時刻:挖隧道工程

低溫的運用,可不只有在微觀世界的物理研究而已,陳洋元與團隊將他們對低溫技術的理解,運用到真實世界,解決生活中所發生的問題。

1988 年起,臺灣開始興建雪山隧道,由於隧道施工路徑,行經了多數斷層、剪裂帶與地下湧泉,導致施工過程中的全斷面隧道鑽掘機 (潛盾機) 多次遭遇大量湧水而受阻。1997 年 12 月,更有一部機組因隧道崩塌而損毀報廢,因此,在湧水環境下依然能有效率地施工,即成雪山隧道工程的關鍵。

在雪隧豎井開挖前,陳洋元團隊先在中研院區試驗。此時液態氮正由冷凍管(白色)在冷凍地盤中。 圖片來源│陳洋元提供

陳洋元得知施工過程的湧水阻礙後,想到百年前英國開挖海底隧道、以及俄國會特別利用冬天結冰期來施工的冰凍工法,便主動寫信建議當時的交通部部長,並提出構想簡報。1999 年,負責雪隧施工的榮工處,也提供了一個研究計畫,讓陳洋元與實驗室團隊利用液態氮試驗冰凍工法,在雪隧的豎井施工地點嘗試施工,並取得了成功凍土開挖的成果。

用液態氮將土壤整塊結凍後,就能順利開挖出坑道,環形為冷凍後開挖出之冰牆。
圖片來源│陳洋元提供

冰凍工法的原理相當簡單直觀,就是利用溫度僅 77 K (−195.79 °C)的液態氮,使土壤中的水分結冰。土壤結冰後變得如岩石一般堅硬,開挖的過程中就能避免土壤因含水量過多、土質鬆軟而坍塌。

但是,如何讓低溫的液態氮,可以準確冷凍到需要開挖的部位,並確保冷凍的強度,則是實踐冷凍工法的困難之處。對此,陳洋元自行設計了液態氮冷卻、排氣與監測的工程系統,並透過電腦模擬估算液態氮的冷凍時間,成功開發出能開挖豎井的冷凍工法。

 

陳洋元設計的土壤冷凍實驗配置圖。
圖片來源│陳洋元提供   圖說重製│張語辰

但很可惜的,由於雪隧施工過程的工程考量、工期壓力與學科分野後的本位主義,陳洋元團隊的冷凍工法,最終仍未被雪隧的施工單位所採用。陳洋元認為,這代表了學術研究和技術落實的差異。

學術研究雖然可以驗證新技術是否有成功的機會,但要讓技術開發完成,仍需要實務單位投入組織團隊與資源。

不過很快地,冷凍工法又得到了來自工地現場的呼喚。2006 年台北市開始大規模建設與更新地下汙水道,在地下汙水道的豎井興建工程中,遇到例如華江橋一帶地下水位較高的地方,豎井深處會有湧水而完全無法開挖。若停下來抽水排除障礙會嚴重延誤工期,而造成施工廠商的重大負擔。因此,陳洋元老師接受了施工廠商的委託,設計出能在豎井底層使用的冰凍工法,解決了地底水平開挖工程的湧水問題。

(左)在豎井內透過推進機,水平開挖出汙水下水道
(右)利用液態氮冰凍工法,將豎井周圍的土壤結凍,改善開挖過程的湧水問題
圖片來源│陳洋元提供

 回顧起運用知識投入解決工程問題的經驗,陳洋元認為臺灣的產學合作與技術轉移,仍有相當多傳統思維需要突破。像是中研院雖有開發冰凍工法的經驗,但近幾年一些政府重大工程施工時,寧可高價雇用日本冰凍工法的團隊,也不願學習並採用中研院的技術。

兩棘矛:紅火蟻防治

不只是工程上,陳洋元團隊也將液態氮運用於紅火蟻防治。2001 至 2002 年間,紅火蟻透過運輸的貨櫃入侵到臺灣,成為影響農業、生態與人類安全的外來入侵種。利用熱水、化學藥劑等防治方法效果均有限,且須留意藥劑對生態的副作用。2004 年,當時的中研院李遠哲院長在立法院備詢與記者提問時,提出可利用液態氮消滅紅火蟻的構想。會後,李遠哲院長委託陳洋元開發液態氮撲滅紅火蟻的技術。

陳洋元與中研院生物多樣性中心的馬堪津研究員合作,發現紅火蟻在低於 -17°C 的環境會完全死亡;陳洋元同時也委由中研院物理所精工室的技師,打造在紅火蟻巢灌注液態氮的金屬管路。試驗結果發現,撲滅成效可完全根除蟻巢內的紅火蟻群與蟻后,也毫無任何汙染與副作用。

利用液態氮冷凍紅火蟻蟻巢。
圖片來源│陳洋元提供 圖說重製│張語辰

除了進一步技轉、推廣液態氮防治技術,陳洋元也研究如何有效定位紅火蟻蟻巢的位置。團隊曾利用軍用級紅外線偵測儀,企圖偵測紅火蟻蟻巢的溫度來定位,原本想法是蟻巢的溫度可能高於一般土壤,但實際上因為蟻巢通風良好、溫度反而較低。由於紅外線偵測儀不易偵測出剛形成的較小蟻巢,陳洋元因而進一步開發更有效的「紅火蟻偵測犬」。

陳洋元後續將紅火蟻屍體樣本寄至屏科大與祁偉廉獸醫師合作,訓練出能有效定位紅火蟻位置的偵測犬。偵測犬搭配液態氮與其他防治工法,近年來持續套用到大學校園、桃園機場、松山機場、淡水輕軌、台北花博等地的紅火蟻防治,以免紅火蟻破壞重要的電線或飛航線路,並需搭配定期觀測追蹤。近年來,日韓等國也因有紅火蟻防治的需求,而尋求陳洋元團隊的技術協助。

自製低溫比熱系統,探究低溫世界

無論是冰凍工法、液態氮防治紅火蟻,這些應用都是基於對「低溫物理」的成熟了解。但時間回溯到更早之前,最初發展低溫物理的科學家,其實有他們好奇、想探究的現象。

例如,今日對於低溫超導體的興盛研究,肇始於 1911 年時,荷蘭科學家海克.卡末林.昂內斯 (Heike Kamerlingh Onnes) 發現水銀在溫度 4.2K 時,電阻會完全消失、成為超導體。伴隨著低溫環境與低溫技術的出現,科學家開始發現在低溫狀態中,物質的特性有了超乎預期的現象。

從材料研究的觀點來看,微觀尺度的物質世界,其實就是原子與電子的交互作用。物質藉由不同的原子組成、排列,決定了物質的特性;藉由原子的震動,呈現出熱的現象;藉由電子的流動,則呈現出了電流。

伴隨量子力學的發展,物理學家利用「聲子」的概念,來理解原子的排列與震動,在過去七十年來,已累積了大量理論與實驗的成果,而造就了今日科學對晶體的理解。然而,對於「電子」性質的理解,卻因為聲子振動時的現象,會掩蓋電子的物理現象,使得對電子的研究明顯晚於聲子的研究進展。直到低溫技術的出現與變革:低溫環境不斷地改善、不斷地下探人類能創造的最低溫。

在低溫環境中,聲子如同結凍般,大幅減少了聲子振動所帶來的影響,而使得電子的特性,終於能開始被觀察研究。

1980 年代,正值低溫物理發展的高峰。1989 年,陳洋元從加州大學回到中研院物理所,建立了奈米材料與低溫物理實驗室,開始積極發展低溫技術。環顧當時臺灣沒有一台自製的比熱儀,而比熱的量測在凝態物理研究中是相當重要的元素,可以提供聲子、電子、磁性、相變等訊息,像是比熱對於超導材料的研究便不可或缺。

因此陳洋元決定發展臺灣自己的低溫比熱系統,此系統最關鍵的就是量測晶片、電子系統、與電腦程式。

陳洋元自行開發的低溫比熱系統。
圖片來源│陳洋元提供

2010 年開發的第五代比熱量測晶片,Ni-Cr 與 RuO2 薄膜由無塵室半導體製程完成。晶片由四條金線懸於真空中,與控溫之銅座相連接。
圖片來源│陳洋元提供

比熱量測晶片,中間的銀色方塊為樣品(重量約 1~15 mg)。
圖片來源│陳洋元提供

如上方的圖片所示,量測晶片上有加熱與溫度感測薄膜,懸吊於真空中,利用加熱、放熱時產生的溫度變化,可於溫度 0.3-300K、高壓、磁場的環境下,測量微小樣品的比熱,例如二鋁化鈰 (CeAl2) 在奈米尺寸會呈現與塊材不同的比熱。過去 30 多年運用此低溫比熱系統發表之論文含 Physical Review Letters (PRL)、Physical Review B (PRB)、Applied Physics Letters (APL) 等計 70 餘篇。

比熱量測案例:二鋁化鈰 (CeAl2) 80 nm 奈米樣品的低溫比熱與塊材截然不同,凸顯了奈米科技的獨特性。
圖片來源│陳洋元提供,取自 Size Dependence of Heavy Fermion Behavior in CeAl2

設置「稀冷機」,讓低溫更低溫

進行低溫物理研究時,若單純只使用液態氦,會受限於液態氦的沸點,難以繼續降至更低的溫度。對此,中研院於 1995-1996 年間,設置了臺灣第一台稀釋致冷機 (dilution refrigerator),利用不同比例 4He 與 3He 的蒸發,最終能達到 0.035K 的超低溫度。

我們可以簡單想像,在單純熱交換的世界中,例如將冰水與溫水混合,所能得到的最低溫,一定會高於冰水的溫度。因此,若無法取得比 4He 與 3He 沸點更低的物質,則實驗環境勢必無法低於 4He 與 3He 的沸點溫度。

因此,科學家運用「蒸氣壓」能影響「沸點」的特性,來取得更低的溫度。就像在高山上,氣壓較低時,水的沸點也會降低、而更容易煮沸。若將 4He 與 3He 置於更低表面蒸氣壓的環境中,則可以使兩者的沸點分別降至 1.5K 與 0.3K。

稀冷機,則更進一步運用物質在「相轉變」時,會帶走熱量的特性來降溫。

如下圖所示,稀冷機中的混合室 (mixing chamber)內有兩種由不同比例 4He 與 3He 所組成的液態相,形成相界 (phase boundary)明顯的兩相分離。混合室中 4He 較多、 3He 較少的部分,以管路連接一以 4He 為主的混合物容器 (still) ,當對 still 抽氣時,會使混合室中的 3He,先從 3He 較多的液相,跨越第一個相界至 3He 較少的液相,再跨越第二個相界至 still。

  1. mixing chamber 中有兩個不同 3HE 和 4HE 組成的液態相。
  2. 當對 still 抽氣時,mixing chamber 中濃相區(深藍色區塊)的 3HE 會被抽走,下層中稀相區(淺藍色區塊)中的 3HE 會穿越過兩相間的界面,補充上層濃相區被抽走的 3HE,此種類似蒸發的作用會帶走熱量。
  3. 3HE 再穿越至 still 區蒸發、將熱量帶走,而能降低溫度。

稀冷機的裝置示意圖。 資料來源│陳洋元 圖說重製│廖英凱、張語辰

兩次相界的跨越,就如同兩次蒸發帶走熱量一般,可使混合室的溫度降低至 10-3K 的溫度狀態。以此技術,目前的世界紀錄,更可達到 10-12K 的程度。

陳洋元笑稱,當年由於稀冷機技術相對複雜而多數學校無法設置,中研院的稀冷機與良好的低溫環境,就像是一個創造了一個「dilution 俱樂部」,吸引了許多低溫物理的人才來此研究。

不過,雖然可利用液態氦來達到低溫,但液態氦無法人工合成、所費不貲,是低溫研究的重大花費。因此,陳洋元在中研院物理所旁,建立了「氦氣液化系統」,此系統能回收物理所實驗室本來排放到大氣中的氦氣,並重新壓縮降溫與液化,從而回收氦氣循環使用,節省資源並降低研究花費。

氦氣液化系統:從物理所回收的氦氣,會先儲存在上方的氣球,再壓縮分裝到鋼瓶中儲存備用。
攝影│廖英凱 圖說重製│張語辰

氦液化機室:回收的氦氣,經過這台機器液化後,再次用於物理所的低溫實驗。
攝影│廖英凱 圖說重製│張語辰

這幾間實驗室啊,還有隔壁的那兩間工廠……是當年我規畫蓋出來的啊

走在中研院物理所建物之間,陳洋元悠悠地這麼說。從低溫儀器的開發,到低溫物理的基礎研究;從實驗室裡的學術環境,到工地與蟲害的實際應用,陳洋元是少數投入如此廣泛與多樣領域的研究者。

回顧過往,這也許和陳洋元與團隊從 1989 年開始,長期耕耘中研院物理所的基礎建設有關,包含建立氦氣液化系統,協助建立精工室、以及位於物理所地下室的磁性實驗室和 X 光實驗室。

如同基礎研究之於整體學術發展的重要,基礎研究環境的興建與營運,可以帶來前端研究的成果;而立於基礎知識之上,我們更能發現複雜生活問題的解決方法。

本文轉載自中央研究院研之有物,泛科學為宣傳推廣執行單位

The post 物質世界和生活問題的解答,都藏在低溫世界!──專訪中研院物理所陳洋元 appeared first on PanSci 泛科學.

賀建奎現身第二屆國際人類基因組編輯峰會,他回答了哪些問題?

$
0
0

暨之前引發軒然大波的新聞發表後,賀建奎今日 (2018/11/28) 出席了在香港大學舉辦的第二屆國際人類基因組編輯峰會。主辦方在演講前聲明對於賀的發表事情並不知情,而他提交給會議的簡報檔中也沒有提到關於雙胞胎的資訊。但是基於言論自由以及各方考量,他們最終決定讓賀如期上台發表,並且給予了他獨立的發表和提問環節。

峰會官網直播截圖。

前期實驗在動物身上修改 CCR5 蛋白

在發表前,賀首先向自己任教的南方科技大學致謝,但他表示校方對其研究內容事先並不知情。而研究資料已投稿期刊,等待審查。賀所發表的部分橫跨了動物實驗,而後到人類胚胎,首先使用了老鼠、猴子,最後則是如今舉世聞名的雙胞胎。

賀建奎表示,HIV 病毒造成了嚴重的問題,尤其在南非地區感染率極高,嬰兒在出生後的幾個月感染機會高,往後也會有歧視等問題,這是他想要解決的部分。賀所採用的作法是使用 CRISPR/Cas9 技術去修改人類胚胎的 CCR5 (C-C chemokine receptor type 5) 蛋白,以避免其感染 HIV 病毒。

  • 註:有另一類型的 HIV 病毒,是利用輔助受體 CXCR4 來感染 T 細胞,換言之,即便編輯了 CCR5 基因,嬰兒仍可能被感染。

研究首先以老鼠進行實驗,編輯十分有效,被破壞 CCR5 基因的小鼠到了第三代時,其心、肝、肺、胃等部位的組織切片與行為都與一般未經編輯的小鼠沒有差別,並沒有出現健康問題。其後,賀的團隊利用了猴子進行實驗。

  • 脫靶效應 (off-target):CRISPR 為相對新穎的技術,使用時有機率會意外修改到其他基因,而這類基因突變的影響可大可小、難以預測。

團隊曾經在老鼠身上進行 CRISPR 實驗。圖/pixnio

基因編輯雙胞胎,似乎有點兒小差錯

賀建奎的團隊利用了 HIV/AIDS 的自助團體尋找自願受試者,而後共有 8 對伴侶報名,1 對中途退出。參與研究的 7 對伴侶都是父親為 HIV 陽性、母親為 HIV 陰性(未感染)。根據現場的問答,賀表示共有 30 個受精卵細胞成長到胚胎階段,其中 70% 經過編輯。

現在已經平安出生的雙胞胎是露露和娜娜,她們的母親是首先懷孕的。

  • 註:另有一對目前正處於化學性懷孕階段 (chemical pregnancy),意即早期受孕但未確定著床成功。

為了要確認整個成效,研究團隊在整個過程中進行了各種檢測(對真的是測了又測、測了還測),讓我們看看他們究竟測了些啥:

基因編輯嬰兒實驗流程圖。(點圖放大)來源/賀建奎演說ppt

當露露和娜娜的受精卵經過修改、發育成囊胚 (blastocyst) 時, 團隊取 3-5 個細胞出來定序,這是 PGD(Preimplantation genetic diagnosis,胚胎著床前基因診斷)。而後將囊胚植入母親子宮,懷孕期間持續以胎兒的游離 DNA 檢測。等到小孩出生後,再取臍帶血、胎盤等組織進行基因檢測。

PGD 的測序結果。來源/賀建奎演說ppt

PGD 檢測結果顯示,露露兩條 DNA 的 CCR5 基因皆有被編輯,其中一條多了一個鹼基對,另一條少了四個鹼基對,成功使兩套基因都無法製造出 CCR5 蛋白。但娜娜就不一樣了,其中一條少了十五個鹼基對,會製造出結構較不穩定的 CCR5 蛋白(只是病毒較難結合上去),另一條沒有編輯成功,還是原本的序列,也就是說,娜娜仍然可以製造功能完全正常的 CCR5 蛋白,不能免疫於 HIV 病毒。

編按:此段為 11/29 新增

雖然露露的兩套基因都編輯成功,但露露似乎出現了脫靶造成的突變狀況,團隊判斷突變的位置是非編碼 DNA,附近也無轉錄因子,因此「可能」不會造成重大的影響。賀建奎宣稱父母充分了解兩個胚胎的狀況後,仍然同意懷下露露和娜娜。

  • 註解(11/29新增):兩個胚胎皆在植入母體前就已知曉各有問題,尤其是娜娜不僅未達成實驗目的,還要承擔基因編輯的風險。賀建奎可以選擇中止實驗,但他仍然繼續實驗讓他們出生在世界上,動機令人費解。

PGD結果發現露露有一處基因編輯脫靶造成的突變。來源/賀建奎演說ppt

不過,在出生後的定序,賀建奎則表示並沒有出現任何問題。

  • 註解:這個薛丁格般的脫靶是怎麼回事?其實,這的確有可能發生,畢竟 PGD 檢測的階段樣本數較少,有誤測的可能。但在沒有確切看到論文之前,我們無法妄下定論。

賀建奎說,團隊在未來 18 年,都會持續進行追蹤,直到雙胞胎成年。

發表結束後,眾多疑問仍未平息

針對實驗本身,賀建奎選擇修改 CCR5 基因,然而科學界對於 CCR5 的功能真的充分了解嗎?破壞它既有的功能,會不會造成其他問題,譬如說更容易得到流感?而且實驗的受試者為父親帶原 HIV 病毒,母親沒有帶原,原本人工授精的流程中就已經進行精子洗滌,可以安全生出未感染病毒的嬰兒,那麼修改胚胎基因實在是非必要而多餘的舉動,此實驗的正當性令人質疑。

對此,賀建奎再次強調愛滋病的問題,表示他實驗的目的並不只針對本案而已,而是為了全球數百萬個有感染風險的孩童。然而針對修改 CCR5 基因本身引發的風險則沒有做正面回覆。

另外,也有許多關於研究倫理的問題。會場多次有人提出質疑,認為賀的研究並未通過適當的倫理審查。在問答中,賀亦並未明確回應研究內容經歷哪些單位的倫理審核。

  • 註解:他只說實驗前跟很多人討論過內容,這實在難以被判定為經歷完善的討論審查。

這次的研究引發了許多研究倫理爭議。圖/ImageCreator

而針對事前告知方面的質疑,賀則表示研究共經過兩輪的告知:首先,團隊成員先與自願者會談了兩個小時,而在一個月後,自願者到達深圳,並由賀建奎與另外兩名觀察員與他們會談了 1 個多小時。他宣稱自願者都是高知識份子,非常理解這個研究的可能發展和風險。在第二次會談時,賀進行了知情同意 (Informed Consent)。但他的團隊是否有受過相關訓練呢?對此,他僅說自己在起草同意書前有讀過指導方針。

最後,大家都很想知道更多關於這對雙胞胎及其父母的資訊。賀建奎說中國的法律禁止揭露愛滋病帶原者的資訊,其他研究資料現已公開。他表示並不想干涉孩子的未來,他尊重兩個孩子。最後,他回答主持人的提問,說如果是自己的孩子,他也會願意進行同樣的嘗試。

目前階段,賀建奎實際研究資料尚未正式發表,而他對於會議上許多疑問亦含糊以對。第二屆國際人類基因組編輯峰會的主辦方在賀演講之前即表明,對相關事件於明日大會將有正式聲明發表。

The post 賀建奎現身第二屆國際人類基因組編輯峰會,他回答了哪些問題? appeared first on PanSci 泛科學.

如何面對「旱澇並存」的未來?氣候變遷下區域豪雨和旱災的科學成因

$
0
0

本文轉載自中央研究院研之有物,泛科學為宣傳推廣執行單位

  • 採訪編輯|古國廷 美術編輯|張語辰

防洪防旱前先知道…

2018 年 8 月強降雨使南部水災,造成居民傷亡也重創當地產業;同年 9 月,北部降雨使北北基多處淹水。時節將進入冬季與春季,臺灣又可能面臨長時間沒有下雨,引發缺水危機。如何面對「旱澇並存」的未來?本文專訪中研院劉紹臣院士,藉由數十年的大氣科學研究,帶我們了解氣候變遷如何影響臺灣降雨的變化。

區域大雨越來越大、小雨越來越小,這種趨勢會隨全球溫度的增加越來越厲害。

根據聯合國 IPCC 報告,從 1880 年到 2012 年全球平均地表溫度增加約 0.85 度。雖然聯合國研究報告或觀測資料分析,都認為「全球溫度變化」對「全世界總雨量」影響不明顯,但劉紹臣與其團隊發現「地方區域降雨」卻有所改變。

劉紹臣團隊選定北緯 60 度至南緯 60 度之間的區域,針對 1979 年至 2013 年世界各地雨量與溫度資料,使用年際變異法 (Interannual Difference Method, IDM)分析,即任意選擇兩年雨量計算差值,然後比對該兩年的溫度差異做統計分析。分析結果顯示:區域降雨變化趨勢,大多呈現強降雨增加、中小雨減少。

美國、加拿大東部、中東、和南美洲東部地區,呈現明顯的乾燥趨勢。同時,澳洲北部、南非、印度西部、中國西部地區,則呈現明顯的降雨增加。(縱軸為緯度;色條為年度總降雨量趨勢,單位 mm K−1
資料來源│Liu, R., Liu, S.C., Shiu, CJ. et al. Adv. Atmos. Sci. (2016) 33: 164.

「陸地上看到的這種現象,是用傳統降雨的雨量計測量出來的。海上則是來自遙測衛星的觀測。從陸地和海洋的區域觀測來看,區域大雨越來越大、小雨越來越小的現象非常一致。」劉紹臣補充。

什麼原因使得全球區域大雨越強、中小雨越小?

強降雨生成的原因,是由於底部有很多又濕又暖的空氣,而上面是相對比較乾冷的空氣;那這種情況下面熱、上面冷,它就會產生不穩定性質,因為熱的空氣密度比較低,熱空氣就會開始上升。

熱空氣含有很多水氣的話,上升到幾公里以後,那個水氣就開始變成液態水;再上升幾公里,通常是到六、七公里以後變得更冷,液態水就會變成冰。在水氣變液態、又變成固態的時候,會釋放出來所謂「潛熱」,會使這個對流更加強。

全球暖化的時候,溫度增加,空氣裡面的飽和水蒸氣也會增加。每增加絕對溫度 1 度 K,空氣中的飽和水蒸氣會增加差不多 7 %;也就是說,每增加 1 度 K,這個對流釋放出來的潛熱就會多出 7%。

潛熱增加了 7%,氣流每這樣上下翻動一下,對流的強度也會增加 7% ,吸進來的水氣量也跟著增加。本來吸進來的半徑好比說是周圍 10 公里,可是對流一加強以後,吸進水氣的能量就更強了,就是以 20 公里的半徑範圍吸進大氣中的水氣。這個循環會繼續,因為它有一個正向的回饋作用,所以這個區域的降雨增幅就超過 7%。

因此,當對流的水氣越多,釋放出來的潛熱越多,那個區域的強降雨就會越強。

至於中小雨為何會減少,是因為氣溫增加 1 度 K,大氣裡面的飽和水蒸氣只增加 7%,但這個強降雨拿走那麼多水氣,中小雨分配到的水氣就少很多。基於這些原因,我們才會看到地球上大部分區域的強降雨增加、而中小雨普遍減少。若以總雨量來說,原來有大量強降雨的地區(例如大洋洲附近),雨量會增加;原來中小雨比較多的地方(例如墨西哥西部的大面積海洋),雨量就會减少。

氣候變遷如何影響臺灣降雨?對我們生活有何衝擊?

臺灣區域降雨同樣有大雨越強、中小雨越小的變化。我們研究團隊蒐集 1961 年至 2005 年間,中央氣象局 15 個地面觀測站資料,將這 45 年來降雨量依降雨強度分成十個等級,再分析各年度降雨強度之降雨量隨溫度的變化。結果如下表所示:

全球溫度每增加 1 度 K ,臺灣降雨強度前 10% 強降雨的降雨量,大約增加 140%;降雨強度後 10% 小雨的降雨量,大約減少 70%。
資料來源│劉紹臣提供(取自 Liu et al., 2009 未發表的資料)

我們的分析結果發現:臺灣強降雨隨溫度升高而增強,當全球溫度每增加 1 度 K ,臺灣降雨強度前 10% 強降雨的降雨量,大約增加 140%;相對的,中小雨隨溫度升高而減少,降雨強度後 10% 小雨的降雨量,隨之減少大約 70% 。近年也發現中小雨的日數一直在減少,不降雨的日數正在增加。這種情況通常是在冬天和春天發生,是臺灣乾旱最嚴重的季節。

我們研究 1961 年至 2011 年侵襲臺灣的颱風特性,也看到類似趨勢。研究結果發現:隨著全球溫度增加,侵襲臺灣颱風的強降雨強度也隨之增加,而中小雨減少。

這個是非常可怕的事情,也就是說颱風強降雨會增加很多,那颱風引起的洪水還有土石流也就隨著增加。因為中小雨減少的趨勢,乾旱對我們臺灣的影響又比洪水來得更大,不只農業需要水,工業也需要用水。面對這些災害,臺灣必須採取調適措施因應,問題在於──我們的調適政策是根據「氣候模式」制定。

臺灣的氣候變遷調適政策建立在氣候模式之上,會有什麼問題?

氣候模式我們知道它的不定性很大。氣候模式目前真正有用的、大家比較能夠認可它的準確性,就是全球跟大尺度的「溫度」變化。連 IPCC 都認為氣候模式預測的「降雨」變化,尤其是區域性的降雨變化可信度很低。但世界各國絕大部分是根據氣候模式去做調適,我們臺灣也不例外。

我先從氣象預測模型來解釋。氣象預測模型是根據流體力學等各影響條件來預測天氣,如果把所有條件都考慮進去,那預測會非常準確。但如果有條件沒有考慮進去,預測時間一拉長就會失去準確性,隨預測時間越長、準確性越差。

世界上氣象預測最好的幾個國家,像是歐盟、美國、日本等國家,比較準確的氣象預測大約可以到十天,很少會超過二十天。也就是說,即便是短期的天氣預測,就有許多影響因子沒有考量進去;長時間、大空間尺度的氣候模式,其影響因子就更加複雜。氣象可預報性不會超過 20 天,但現在氣候模式要預測是 20 年、100 年以後的氣候變化。

而將預測全球性、長時間尺度的氣候模式,去細緻地看區域性、季節性的降雨趨勢,會增加預測的不確定性,若將其套用在臺灣各縣市降雨預測更是如此。

如果氣候模式預測長時間、大尺度降雨是錯的,那根據這個模式更精細地預測區域、季節性降雨,只是把錯的東西分析得更仔細一點。

近期對於區域強降雨預測有哪些進展?若應用在臺灣有何幫助?

過去研究發現區域大雨增加、小雨減少,我們也注意到大雨雨量的增加,增加程度大到影響全年的雨量。在很多區域,隨著一年一年的變化,只要降雨強度前 30% 的大雨其降雨量增加,那一年的總雨量就會增加;反之減少的話,那一年總雨量就會減少。

根據這個觀察,我們團隊和北京大學、暨南大學合作,用統計方法找出影響強降雨的因素:好比說聖嬰現象─南方震盪 (ENSO)、北太平洋年代際震盪 (PDO),還有全球溫度等。這些影響因素很多是可以預測的,像是 ENSO 現在預測 1 年的準確性已經很不錯,全球溫度也有相當好的預測方法。

然後我們將這些影響因子,跟過去觀測到強降雨的雨量做統計迴歸。我們跟從前預測方法是一樣的,不同之處在於我們的研究聚焦於預測「強降雨」。

目前我們可以預測到差不多未來半年的降雨量,做出來準確性是很好的。這種預測目前來說世界各國雖然做的很多,可是成功率很小。美國氣象局做年度或季節的降雨量預測,通常只能預測下個季節比過去平均雨量偏高或偏低;我們團隊現在可以說下一個季節雨量是多少,或者是明年雨量是多少。

從季節或年度來預測區域降雨,對臺灣的防災是有直接的幫助。

我覺得政府不僅需要投入救災,事前的防災更是重要,像是防洪、防土石流和防旱等各種預防措施。如果把這個區域降雨預測方法應用在臺灣,提早知道下一年或下個季節會有強降雨或乾旱,對臺灣政府規劃氣候變遷的調適策略非常有用。

研究過程如何面對各種困境?

研究的過程總是有上上下下,有時候也是蠻沮喪的,認為自己努力不夠,更努力的話研究應當做得更好。

我大部分時間都在分析資料 (data),我看 data 的時候,今天看 3 個鐘頭,明天看 2 個鐘頭,每次我都用不同的角度去看,拿不同的 data 來分析。幾乎每次我都會說,好像看到了一些新的東西。

「每次分析 data 看到新的東西,其實是我工作最大的動力。」劉紹臣笑著說。
攝影│古國廷

也許後來證明當下初步的研究結果不大對,可是每當看到新東西的同時,對這種工作的滿足,帶給人生的快樂,那種快樂很難形容。

孔子說:「朝聞道,夕死可矣」,我從前完全不信,我後來是信。我相信有人真正看到一個新東西、發現一個新東西,他會快樂到講出這種話。就是說早上聽到這個道理以後,晚上就可以翹掉了,他真正感覺到他這一生夠了。我是做研究的,一天只要能夠學到一點東西,那一天我就會很快樂,這也支持我一而再、再而三地往前走。

延伸閱讀

本文轉載自中央研究院研之有物,泛科學為宣傳推廣執行單位

The post 如何面對「旱澇並存」的未來?氣候變遷下區域豪雨和旱災的科學成因 appeared first on PanSci 泛科學.

決戰山林惡地之巔!剖析竹林亦俠亦盜的本質

$
0
0

本文轉載自中央研究院研之有物,泛科學為宣傳推廣執行單位

  • 採訪編輯|廖英凱、美術編輯|張語辰

顛覆你對「竹林」的認識

藝術文化視野的竹林,常享有簡練高潔的雅名。但就生態的觀點,中海拔森林中的「孟宗竹林」,卻是蠶食山林、劣化土壤的入侵外來種。而在杳無生機的月世界惡地,卻又有「刺竹林」肩負了改善土壤、為其他物種開疆拓土的重責大任。

中研院生物多樣性中心的邱志郁研究員,與團隊透過核磁共振、光譜分析與化學定量、氣相層析質譜分析、次世代 DNA 定序等技術,以生態學家之觀點,帶領人們重新認識竹林「亦俠亦盜」的本質。
攝影│廖英凱

亦俠亦盜

每一種生物,憑其外貌形態、生長歷程與生命特徵,在不同的文化中被賦予了獨特的文化意味。例如,竹子,在東亞文化圈中,象徵超然或正面的意涵。它是歲寒三友的要角,是花中四君子的一員,是日本「竹取物語」的發想起源,更是名校交通大學的象徵。

竹筍初生黃犢角,蕨芽初長小兒拳。試尋野菜炊春飯,便是江南二月天。──黃庭堅《春陰》
圖片來源│邱志郁(臺灣南投竹山孟宗竹林採收的冬筍)

回歸於日常生活,竹子也一直是千百年來,人類生活中身兼多職的重要植物。作為建材,撐起了濕熱雨季的涼爽住宅;化做竹筏,承載了水鄉澤國的熙攘往來;憑藉工藝,以笙管笛簫之貌,譜寫出文化的世代交替;時至今日,蕨芽初長的竹筍,炊香後更是令人垂涎的佳餚。

不過,竹林的意涵與功能,不一定都是好的。透過生態學家之觀點——邱志郁團隊進行的竹林土壤學研究——揭露出不同竹林在生態中扮演的不同角色,例如:孟宗竹是劫掠資源的大盜,而刺竹則是營造希望的俠客。

大盜孟宗竹

竹似偽君子,外堅卻中空。根細好鑽穴,腰柔善鞠躬。成群能蔽日,獨立不禁風。文人多愛此,聲氣想相同。──丁文江
圖片來源│邱志郁(大鞍山孟宗竹林)

孟宗竹,原產於中國大陸長江以南的溫帶地區,近百年前引進臺灣本島,適宜生長在氣候涼爽,海拔約 150-1600 公尺的中海拔地區,在臺灣以南投縣與嘉義縣種植最多。例如位於南投的「孟宗竹林古戰場」,是一片高聳入天的竹林,猶如電影「臥虎藏龍」裡的奇幻竹海。而孟宗竹的新生組織,就是我們常吃的竹筍,因採收季節的差異,而又有「冬筍」與「春筍」的不同稱呼。

然而,從生態的觀點來看,孟宗竹是個先天強勢的外來入侵物種,伴隨經濟誘因的人為操作,會逐漸蠶食摧毀森林。

孟宗竹具備「地下走莖」與生長快速的特色,能在地底下將竹林往外擴散蔓延,當竹筍從地下走莖伸出地表時,能迅速抽長生長,尋由林間的孔隙爭取獲致陽光的機會,若能達到既有林地的樹冠層高度,即已立於不敗之地。

孟宗竹林侵入鄰近的杉木或闊葉林,是臺灣山區常見的景象。
資料來源│邱志郁(溪頭羊彎) 圖說重製│廖英凱、張語辰

孟宗竹林透過無孔不入的滲透本領,逐漸佔滿樹冠層的空隙,使日光難以照至地面,最終使得林木的幼苗因陽光不足而枯死,而既有林木也逐漸因自然老化而減少,使得森林衰退而被竹林取代。

除了先天生長快速和往外蔓延的本領,竹葉亦含有抑制其他植物生長的酚酸物質,也助長其生長優勢。此外,孟宗竹及其竹筍的經濟價值,也促使部分農人刻意損傷竹林邊緣的樹木,更加助長竹林生長擴張,以增加採收竹筍的機會。

孟宗竹林的擴張,除了侵略原有森林的空間,而使得生物多樣性降低以外,孟宗竹林的侵入,也會影響該地「土壤性質」的變化。

與杉木林的土壤相比,孟宗竹林土壤的總有機碳量、總氮量明顯減少,至於 pH 值則升高,顯示孟宗竹林入侵造成土壤有機物含量減少,導致土質劣化。
資料來源│Chang, E.H. and Chiu C.Y.* , 2015, “Changes in soil microbial community structure and activity in a cedar plantation invaded by moso bamboo ”, Applied Soil Ecology, 91, 1-7. 圖說重製│廖英凱、張語辰

除了有機物總含量減少以外,孟宗竹林也會改變土壤中不同性質有機物的組成比例。相比起杉木林與過渡帶,孟宗竹林中的易分解有機物比例明顯較高,透過核磁共振、光譜分析與化學酸水解定量等技術,證實有機物比例的改變,源自於竹林的枯枝落葉與杉木林枝葉的成分差異。

枯落物的組成差異,造成土壤有機物組成結構改變。

竹林枯落物的成分,以易於分解的碳水化合物為主;但杉木林的枯落物,則含有不易分解的木質素、單寧、蠟質等物質。杉木林土壤中的有機物分解速度較慢,也具備較高比例的耐分解有機物,可維持土壤中腐植層組成的穩定性;相對而言,竹林只補充較少量的耐分解有機物,長久下來,土壤中耐分解有機物的成分會逐漸降低。

孟宗竹林侵入鄰近的杉木林,導致土壤有機態碳含量(整個圓餅面積大小)減少,耐分解有機物(黑色部分)組成比例也減少。
資料來源│Wang, H.C., Tian, G., and Chiu, C.Y.* , 2016, “Invasion of moso bamboo into a Japanese cedar plantation affects the chemical composition and humification of soil organic matter. ”, Scientific Reports, 6, 32211. 圖說重製│廖英凱、張語辰

竹林枯枝落葉中,氧烷基碳成分最高(黃色和綠色,相當於易分解部分);烷基碳成分最低(黑色,相當於耐分解部分)。顯示出相較於杉木林的枯枝落葉,竹林的枯枝落葉更易於分解。
資料來源│Wang, H.C., Tian, G., and Chiu, C.Y.* , 2016, “Invasion of moso bamboo into a Japanese cedar plantation affects the chemical composition and humification of soil organic matter. ”, Scientific Reports, 6, 32211. 圖說重製│廖英凱、張語辰

為了利用孟宗竹的經濟價值,人類經常砍伐竹林與採集竹筍,會連帶影響到竹林的土壤性質。因為砍伐竹林會直接帶走該塊土地的有機物;而採集竹筍因需翻動土壤,更會加速土壤有機物的分解,而使地力逐漸耗損。特別是耐分解性有機物,可以結合土壤礦物、形成穩定的團粒結構,而團粒結構之間的空隙,能使土壤具備保水、排水、透氣與蘊含養分的功能。孟宗竹林枯枝落葉只能貢獻較少的耐分解有機物,又加上人為頻繁翻動土壤,促進有機物分解,長期而言,耐分解有機物含量日漸減少,將造成土壤劣化。

因此,當土地長期被孟宗竹林佔據、並逐漸擴張時,會影響到森林健康且危及水土保持的機能。

除了觀察土壤性質,從微觀尺度來看微生物族群的組成,孟宗竹林土壤中的細菌多樣性高於杉木林。進一步分析微生物(包括細菌和真菌)族群結構,可發現孟宗竹林與過渡帶的微生物族群結構相似,但與杉木林截然不同,如下方兩張圖片所示。

DNA 定序分析:孟宗竹林土壤細菌多樣性最高,過渡帶次之,杉木林最低。
資料來源│Lin et al. (2014) Microbial Ecology 67:421-429 圖說重製│廖英凱、張語辰

磷脂脂肪酸分析 (PLFA):孟宗竹林與過渡帶的微生物族群結構較為相似,但與杉木林截然不同。
資料來源│Chang, E.H. and Chiu C.Y.* , 2015, “Changes in soil microbial community structure and activity in a cedar plantation invaded by moso bamboo ”, Applied Soil Ecology, 91, 1-7. 圖說重製│廖英凱、張語辰

雖然我們常認為自然界中生物多樣性越豐富越好,但對於森林土壤微生物的多樣性而言,則是不同的概念。

生態系的干擾和棲地破壞,會造成數量有限的高等動植物無法維持正常繁衍甚至滅絕,導致物種多樣性迅速減少。因為高等動植物原本數量就較為稀少,繁衍世代所需的時間也較長,當環境受到破壞時,個體數量遽減,可能導致滅絕,因此造成生物多樣性下降。

相對而言,孟宗竹林土壤微生物多樣性的增加,這現象主因是生態系被干擾,而改變微生物生存的環境壓力。例如,採收竹筍翻動土壤,會促進土壤有機物分解,釋放大量的養分。由於土壤中原本潛伏種類多樣、呈現休眠狀態的微生物,一旦環境中增加了大量養分,會促使各種微生物大量滋生。

原本個體數量稀少或維持休眠的微生物族群也被喚醒,爭相繁衍,引爆了微生物的多樣性。

如同城市汙水的微生物多樣性,會遠高於清澈溪水,但並不代表城市汙水的生態狀況較好。同樣地,當孟宗竹林土壤易分解的有機質變多,使環境壓力下降,就有利於微生物生長。

由此可見孟宗竹林的入侵,呈現表面繁榮的假象,實質不僅使土壤的品質劣化,更根本性地改變了整體生態。極為諷刺地,自古被文人雅士們歌頌志節的竹子,對森林生態系來說卻是個霸占掠奪資源、劣化土地的大盜。

義俠刺竹

忠義之士往往起於草莽之間。不若大盜般的孟宗竹,數百年來,「刺竹」則肩負起了保衛家園的任務,最近的研究更發現刺竹林有改善惡地土壤的生態功效。

咬定青山不放鬆,立根原在破岩中。千磨萬擊還堅勁,任爾東西南北風。──鄭燮《竹石》
圖片來源│邱志郁(高雄月世界刺竹林)

刺竹,原產於中國大陸東南各省,數百年前隨漢人移居臺灣而被引入,普遍栽植於臺灣各地低海拔平地與丘陵。刺竹耐貧瘠、乾旱、水浸與強風,種植後可用來固定河堤,防止土壤被沖刷流失。又因竹桿基部密集且具備帶刺的枝條,構成類似鐵絲網的防衛功能,因此也常被先民種植於聚落四周當作圍籬,以抵抗盜賊與猛獸的侵擾。

刺竹的枝節上具有尖銳短刺,碰到會唉唉叫,經常種植於房舍周圍作為天然圍牆。
圖片來源│認識植物網站

日據時期,刺竹被引進種植於台南左鎮、龍崎與高雄田寮一帶,俗稱「月世界」的惡地。此類地形是由海底沉積的泥岩所構成,土壤質地緻密。隨板塊運動隆起浮出海面後,因質地黏重,使乾季時土壤堅硬而雨季濕滑;另因土壤間缺乏孔隙,難以洗去鹽分,呈現高鹽鹼性,不適合植物生長。

月世界的土壤缺乏孔隙,使得土壤排水性極差,下雨時因雨水無法向下滲透底層,而產生地表逕流沖蝕表土,最終形成了裸露崎嶇地貌。

然而,在這樣的惡劣環境,刺竹是少數能在惡地存續的優勢物種,特別是在較潮溼的北向坡,更可看到蔚然成林的刺竹林。

刺竹林有助於累積惡地土壤有機態碳含量(整個圓餅面積大小),尤其是增加易分解有機物組成比例(粉紅和黃色部分)。
資料來源│Shiau, Y.-J., Wang, H.-C., Chen, T.-H., Jien, S.-H., Tian, G., and Chiu, C.-Y.*, 2017, “Improvement in the biochemical and chemical properties of badland soils by thorny bamboo”, Scientific Reports, 7, 40561. 圖說重製│廖英凱、張語辰

此外,透過有機物的累積和根部的延伸穿透,刺竹林也能增加惡地的土壤孔隙,使土壤保水能力增加,同時排水性質也變好,有助於洗去鹽類,並降低土壤的 pH 值。使惡地的土壤條件改善,而在未來能有利於其他植物的生存。

刺竹林可累積土壤有機態的碳、氮、增加土壤孔隙、減低電導度,有效改善土壤物理化學性質。
資料來源│Shiau, Y.-J., Wang, H.-C., Chen, T.-H., Jien, S.-H., Tian, G., and Chiu, C.-Y.*, 2017, “Improvement in the biochemical and chemical properties of badland soils by thorny bamboo”, Scientific Reports, 7, 40561. 圖說重製│廖英凱、張語辰

進一步分析土壤中的微生物族群結構,由於不同微生物物種的細胞膜的磷脂質脂肪酸組成種類與比例皆有差異,藉由此特性,利用氣相層析質譜儀 (GC-MS) 可判定土壤微生物的族群結構。結合統計上的主成分分析,可發現裸露地與刺竹林,呈現截然兩群不同的微生物群體。

再以 DNA 定序技術分析惡地的細菌種類,如下圖所示,裸露地土壤中「放線菌」與「 γ 變形菌」比例明顯較高,但細菌物種數量較少。而刺竹林中「酸桿菌」與「 α 變形菌」的比例則大幅提升。酸桿菌較適宜 pH 值較低的環境,是森林中的常見菌種,在裸露地則不存在。

刺竹林土壤中的細菌物種數量大幅增加,顯見刺竹林的生長,能改變土壤中的微生物族群結構,並增加微生物的多樣性。與前述孟宗竹林土壤微生物多樣性升高的概念相似之處,在於養分的供應和釋放;差異之處,在於刺竹林貢獻了彌足珍貴的有機物,得以讓瘠劣的月世界惡地土壤綻放生機;而孟宗竹林則是驕奢無度,揮霍原先樹林積累的資產。

相較於裸露地土壤貧乏的微生物多樣性,刺竹林中土壤微生物族群的增加與改變,亦有助於改善土壤物理化學性質,進而為未來其他植物的生長與生態演替,營造出有利的條件。

在萬物俱廢、生機凋零的月世界惡地,唯獨一身荊棘、生人勿近的刺竹林,以先驅者的角色在此綿延,更為後續演替的物種,奠基得以存續的立地條件。對比孟宗竹林侵占繁盛的森林,卻又揮霍剝奪土壤的有機質;刺竹林則是進駐凋敝殘破的惡地,貢獻極度欠缺的有機物。

孟宗竹林與刺竹林相比,儼然是生態系的地痞與俠客。

隨著分子生物學、細胞膜磷脂質成分分析、 DNA 鑑定等科學研究方法的建立與完備,研究團隊已能更有效率地理解自然現象,並建立解釋生態現象的理論。除了看透不同竹林的亦俠亦盜,目前也用於理解原始和次生林,以及紅樹林與水田土壤中的生命現象。

透過生態學家之觀點,讓我們能運籌帷幄於實驗室之中,決戰千里之外的山林惡地之巔。而研究也不只是發表於論文,邱志郁將竹筍在土壤中沉潛蓄勢待發的生態習性,隱喻為下方這首詩,融合對意中人的思慕,與期勉學子立定標竿、堅持不懈的心思。

一如往昔, 側身狹小縫隙。卑微緩緩挪動身軀,悄悄瞻仰高雅光潔的妳。
稍探出頭 ,即已無從迴避。是曙光見證的誓言,讓妳看到我的全心全力。
資料來源│摘自邱志郁「雨中竹─三部曲」系列。圖片拍攝於江蘇宜興。孟宗竹的筍籜有明顯細毛,故中國大陸稱之為「毛竹」。

延伸閱讀

本文轉載自中央研究院研之有物,泛科學為宣傳推廣執行單位

The post 決戰山林惡地之巔!剖析竹林亦俠亦盜的本質 appeared first on PanSci 泛科學.

是天分還是努力?專業音樂人怎麼養成的?──《好聲音的科學》

$
0
0

很多人因為熱愛音樂而想學音樂,但卻因自認沒有天分而卻步。這樣其實很可惜,因為本章接下來要說明的,就是這類「我沒有天分」的顧慮,其實是不必要的。事實是,大多數的專業樂手,也並非與生俱來就有天分。

「天分」這個詞有好幾種用法,但最常見的兩種是:

  1. 對他人的技能抱持無害的驕傲態度。(「是的,我太太跟我對小女獵海豹的天分,感到無比驕傲。這間俱樂部,就是我們送給她做為八歲生日的禮物。」)
  2. 一種大家不時對於人生的不公平,所產生某種摻雜了傲慢、懶惰以及怨恨的奇特感受。(「不,我並沒有被球隊選上,是我那懶散的哥哥入選了──不過是因為他有天分罷了。」)

在以上兩個例子中,天分都被認為是一種與生俱來的天賦。這些人也許值得讚賞,但不能過譽,因為他們只是運氣好而已。就像有的人生來就是捲髮一樣,有的人不過是天生就具有冰雕的才華罷了。

顯然沒有人一出生就是音樂好手。圖/pxhere

關於音樂天份的好消息與壞消息

在音樂界中,「天分」是個常常被人討論的字眼:世界上充滿了「有天分」的小提琴家、指揮家、以及搖滾吉他手。但顯然沒有人一生下來就會拉小提琴,天才就跟一般人一樣,也得要學習怎麼彈奏樂器。然而普遍的看法都是,那些有天分的人在學音樂的時候,要比可憐的平庸大眾學起來更快、更容易,也出色得多。

關於這點嘛,我有好消息,也有壞消息。

好消息是,天分多半是種迷思。因此現在,你大可為自己的偶像或是兒女,感到更驕傲一些,因為他們可能並非生來就特別有才能。

壞消息是,天分多半是種迷思。因此現在,你不用再拿「我沒有音樂天分」做為藉口,自認學鋼琴根本是徒勞,而不去嘗試。

但我憑什麼能這麼說呢?某些人在音樂上的表現,的確要比其他人出色。要是他們沒有天分的話,又該怎麼解釋這一點呢?

且讓我先說個故事給你聽。

遇到挫折時難免會懷疑自己是否適合學習某項技能。圖/pixabay

一九九二年,有個英國研究團隊決定針對音樂天分這件事,進行一項嚴謹的研究。約翰‧斯洛博達教授和他的團隊,調查了二百五十七位年輕樂手,這些人從只學過幾個月樂器就放棄,到正在認真接受專業訓練的都有。

而研究人員很幸運,能直接取得這些研究對象在一項精確的能力評量,亦即英國等級評量系統(UK grade system)上所獲得的成績。如果你在英國境內學音樂的話,就能參加每年的級數測驗,直到達到最高等級,也就是第八級為止。一旦到達這個程度,就表示你演奏樂器的技巧很高明,而且還有能力舉辦演奏會,或是在妹妹的婚禮上演奏,而不會讓所有人尷尬。這同時也是就讀音樂學院所需的條件。

因此,研究人員不但知道這二百五十七位年輕樂手,過去各等級的音樂教育成績,而且還知道他們何時通過各等級的測驗,如此一來就能比較所有人的優劣了。

他們將這些研究對象分成下列五組:

  • 最頂尖的一組樂手透過參加比賽,已取得了就讀某所高級音樂學院的資格。這些人都受過專業樂手的訓練,因此我們稱這一組為「A組」。
  • B組學生也很不錯,但由於他們的比賽成績不盡理想,因此無法進入音樂學院就讀。
  • C組學生很認真地學習音樂,並曾考慮申請音樂學院,但終究決定不參加比賽。
  • D組學生學音樂只是玩票性質,自己或他人都不認為適合進音樂學院深造。
  • E組學生則曾經學過音樂,但後來放棄了。

很顯然地,曾贏得比賽,且最後走上專業訓練之路的 A 組學生,平均而言要比 B 組學生更有天分,而 B 組則又比 C 組更有天分,以此類推。因此斯洛博達教授及其同僚打開電腦穿上實驗袍,想看看這些有天分的學生,相較於天分不高的其他組別,晉級的速度有多快。

當然也有人的晉級速度飛快。圖/pixabay

當他們檢視數據,並訪談這些學生及其家長時,發現結果一如預期:這些佼佼者的確要比其他人更快晉級。在學了三年半的音樂後,A 組學生平均都能達到第三級,而在同樣學了三年半後,C 組學生卻只達到了第二級。

但在這些學者進一步深究後,他們卻開始質疑,成功的關鍵或許並不在於天分。數據顯示,A組學生平均需要花費跟其他組別一樣多的時間來練習,才能通過下一個級數測驗。不論是哪一組學生,若想從第一級升到第二級的話,平均需要投入練習的時間都是兩百小時,而從第六級升到第七級則平均約需練習八百小時。每一位學生從初學者到第八級,平均所需的總練習時數,剛好是三千多小時(當然,並不是所有人都能達到第八級)。

結論很簡單:你練習得愈多,就愈快成為優秀的樂手。A 組學生唯一擁有的「天分」,就是勤奮──他們不但一開始投入練習的時間就比其他組多,並且還逐年增加練習時間。此組學生第一年從每天練習半個小時開始,到了第四年則增加到一個多小時。而級別較低的學生則從不足半小時開始,之後亦並未增加太多練習時間。例如,D 組一開始每天只練習十五分鐘,並在最初四年期間,只增加到令人昏倒的二十分鐘。

平均而言,A 組學生並不特別有天分,他們只不過是每個禮拜練習的時間較多罷了。

一萬小時的刻意練習

另一組由心理學家所組成的研究團隊,在一九九○年代初期,針對柏林音樂學生所進行的一份研究,也證實了斯洛博達教授的發現。研究人員請西柏林音樂學院(Music Academy of West Berlin)的老師,將自己的學生分成三個等級,我們姑且稱之為「優等組」、「良好組」和「普通組」。接著,研究人員以小時為單位,分析所有學生每小時都做些了什麼,並檢視他們過去學習音樂的情況。研究人員發現,學生們在很多地方都大同小異──他們大多都在八歲時開始學音樂,並且每週都花費大約五十小時,從事音樂相關活動。

不能否認的是反覆練習的重要性。圖/pixabay

各組間最大的差異,則是他們過去單獨練習的時間有多長。優等組的學生到了十八歲時,平均已投入了七千四百一十小時在練習上,而良好組的學生是五千三百零一小時,普通組則是三千四百二十小時。這些數據相當符合一般認知的法則,也就是從建築學到動物學,幾乎所有技能,只要投入一萬小時的練習時間,任何人都能達到專業程度(要是想知道一萬小時究竟是多久的話,它大約相當於每天四小時,共需時七年)。

如果你是那種很相信天分,但對成就多半來自簡單枯燥的練習的觀念深感不滿的人,別忘了,這種觀念反而會讓有成就的人更受人尊敬,而非相反。

當做父母的驕傲地述說心肝寶貝的音樂天分與潛能時,其實他們並不知道,自己述說的,其實是子女們在學習樂器上有了長足的進步。這些父母並不會在孩子將小髒手放在小提琴上前,就說「我兒子說不定會成為傑出的提琴家」。他們其實會等到孩子學會了某項技能,並能夠演奏〈我有一隻小毛驢〉或「Smoke on the Water」後,才宣稱自己的孩子有天分。此時,他們似乎已將那一次次勉強通過測驗的日子,以及為此所付出的一切努力,都拋諸腦後了。

擁有高超音樂技能的關鍵,就是所謂的刻意練習。愈是刻意練習,技巧就愈好,這道理適用於任何一種需要技巧的活動。但刻意練習跟一般練習不同,後者通常指的是單純重複已相當熟練的事。而刻意練習則相反,它表示你正準備更上一層樓。你所練習的是對你來說困難的事,一旦能成功予以掌握,就離精通此項技能更近一步。刻意練習的特性之一,就是它並不是一件有趣的事—這也正是為何傑出的人有如鳳毛麟角的原因。

越是努力,越有天份

知名電影製片山姆‧戈德文(Sam Goldwyn)曾說過一句名言:「我愈是努力,就愈幸運。」* 對從事音樂的人來說,這句話可以改成「我愈是努力,就愈有天分。」

  • 戈德文向來以創造許多名言著稱,像是「include me out」(別把我算進去),以及「A verbal contract isn’t worth the paper it’s written on」(口頭約定連張紙都不如)等。但這句關於努力和幸運的名言,並非完全由他原創,而是改編自美國第三任總統湯瑪斯‧傑弗遜(Thomas Jefferson)的名言「我堅信運氣,而且我發現自己愈努力,運氣也就愈好。」

但事情並非僅止於此。

天分與練習時間究竟是成正比,還是成反比呢。圖/pxhere

你大概注意到了,我目前只提到了各組別的平均表現,但其中有某些學生的表現,是遠高於所屬組別的平均值的。他們花在練習上的時間,要比該組平均練習時數多出許多,而某些人即使練習時間少了許多,卻依然能夠成功。這項調查最有意思的結果之一,就是在每一組中都有「少數特例」,這些特例即使投入練習的時間,較該組平均值少了五分之一,卻仍然能成功地通過級數測驗。倘若世上真的有天分這回事,必定跟這部分有很大關聯。

但這些人的天分究竟是什麼?他們是有音樂方面的天分?還是在有效的練習上特別有天分?而且,既然他們這麼有天分,為何有的人沒被分到 A 組?

我們也許可以嚴苛地說,他們不過是比較懂得練習罷了。可能他們就是有本事在每一百小時的練習中,能達到九十小時的刻意練習效果,而其他人卻只能達到三十小時。又或者他們很喜歡刻意練習的高難度挑戰,也就是不厭其煩地重複困難的部分,直到能快速流暢地彈奏為止。但若果真如此,這難道不是另一種對天分的定義嗎?一般對這個字眼的定義是「與生俱來的能力」,而且人們還能輕易地將這種能力,運用在相關的事務上。

斯洛博達教授及其團隊還探討了這些學生在孩提時期,第一位音樂老師對他們所產生的影響。他們發現最終能達到專業演奏等級的重要因素之一,就是學生的第一位老師是否風趣又親切。雖然,在之後的學習過程中,老師是否風趣,並沒有老師是否專業來得重要,但很顯然,在學習的最初階段,小朋友會很努力地取悅自己喜歡的老師。反之亦然:我看過許多在小時候便放棄學音樂的人,都是因為教他們的老師有如缺乏感情的法西斯祕密警察,在家執行勤務一樣。

但其實,每個人對於天分的想法並不都相同。圖/imdb

二○○三年,心理學家蘇珊‧海拉姆和凡娜莎‧普林斯(Vanessa Prince)邀請了一百多位專業音樂人,就這一句「音樂技能是……」來造句,並發現絕大多數答案中的用詞,都以「經過學習」以及「經過養成」為主。而請非專業音樂人作答時,則較傾向使用暗示這件事涉及某種天賦的詞彙。

不論我們如何定義天分,顯然就是有一些人具有音樂天分,但卻猶如鳳毛麟角,即使是在專業音樂人的圈子裡也一樣。斯洛博達教授的研究結果認為,一百個交響樂團的團員中,只有大約十位真的具備天分。這表示在大多數情況下,這些有天分的樂手能在練習時間少很多的情況下,達到跟其他同僚一樣高明的演奏層次。不過,在這群人中又有極少數的人,會投入跟同僚一樣多的練習時間,以成為擔綱獨奏的台柱。

那其餘百分之九十傑出樂手的驕傲父母,大概都會說自己的孩子有天分,但這種說法是錯誤的。針對他們所有的努力,給予他們應得的肯定,才是較為正確的做法。

而從另一個極端角度誤用「天分」這個字眼的人,則是那些不實地宣稱自己是「音癡」的人。對真正的音癡來說,這的確是一大問題,或至少是音樂方面的缺陷,但幸好相當罕見。

 

本文摘自《好聲音的科學:領袖、歌手、演員、律師,為什麼他們的聲音能感動人心?》本事出版,2017 年 10 月出版。

The post 是天分還是努力?專業音樂人怎麼養成的?──《好聲音的科學》 appeared first on PanSci 泛科學.


聽古典音樂讓你變聰明?「莫札特效應」是真的嗎?──《好聲音的科學》

$
0
0

一九九三年,以羅雪(Frances Rauscher)為首的一群心理學家,在聲譽卓著的科學期刊《自然》(Nature)上,刊登了一篇題為〈音樂與空間測試的表現〉(Music and Spatial Task Performance)的論文。

圖/論文截圖

這項研究是為了瞭解學生們,在花十分鐘做了下面三件事的其中一件後,於某項智力測驗上的表現如何:在這十分鐘裡,有的學生聽的是教人放鬆的指令,有的只是安靜地坐著,而其餘學生則聽了十分鐘的莫札特鋼琴曲。接著,所有人都做了同樣的測驗。

測驗結果顯示,聆聽莫札特音樂的那組學生,比聽放鬆指令或是什麼都沒做的學生,成績都要來得好,而進步的幅度,相當於比他們原本的智商高出了八或九分──這對他們來說可是很有用的。

在這項測驗中,學生們要看一些經過摺疊裁剪的紙張上面的圖形,並猜測這張紙在沒有摺過前是什麼樣子。這裡有一個類似的例子:你能看出下圖的紙張,在經過摺疊和裁剪後,會變成圖A到E中的哪個形狀嗎?(解答請見本章最後一頁)

圖/出版社提供

問題在於後來發生的事。

要是當初羅雪博士及其團隊,將這項測試結果發表在某份不知名的心理學期刊上,那麼在她專業領域內的同僚就會閱讀,並將它加進眾多有關大腦運作的已知資料中,並勤於增修這些資料。但,《自然》可是首屈一指的期刊,許多非常新奇、甚至顛覆世界的科學發現都會刊登在這裡,也就是說,各家報紙媒體都會聘請專家學者(或至少是某個戴眼鏡的傢伙),按月詳讀其中的每篇文章,搜尋有關癌症療法,或是無需熨燙的褲子等各種新穎題材。

古典音樂可以提升智商?這說法實在太誘人了!

羅雪博士的發現,在經過這些戴著眼鏡的記者不斷散播後,媒體便充斥著古典音樂能提高智商的報導,而「莫札特效應」(Mozart effect)的說法也就不脛而走。但羅雪博士不但從未表示聆聽莫札特的音樂能提高智商,而且還對媒體那些短視的新聞從業人員解釋了好幾次,卻根本是徒勞。她所談的,不過是某些「技能」,與我們所想像特定行為的結果有關罷了。

當然,根本沒人關心她到底說了什麼。古典音樂能讓人變得更有腦的說法實在太誘人,因此可不能揭露實情,免得大家想像幻滅。

圖/pixabay

之前有很長一段時間,各行各業人人都相信這套說法。

英國古典音樂廣播電台 Classic FM 還推出了一張名為《嬰兒音樂》的暢銷 CD。在美國,新罕布什爾州則贈送新手媽咪人手一張古典樂 CD,佛羅里達州還通過一項法案,要求州立的托育中心播放古典音樂,德州監獄甚至播放交響樂給受刑人聽,還因此引發許多淋浴時刺傷人的事件,因為大哥們竟為了拉赫曼尼諾夫和西貝流士孰優孰劣而起爭執。到了一九九○年代末期,由心理學家亞德里恩.諾斯和大衛‧哈格里夫斯在加州和亞利桑那州所進行的調查,發現每五個人中就有四個人知道莫札特效應。莫札特應該會感到很欣慰才是。

從那時開始,許多心理學家就開始探究智商與聆聽莫札特音樂之間是否有關聯。二○一○年,研究人員在檢視了各種與此主題相關,共有超過三千人參與的三十九項調查後,確定真的有所謂的莫札特效應──但卻跟莫札特一點關係也沒有。

從莫札特到史蒂芬金……也太不懷好意了吧。圖/imdb

多倫多大學的心理學家 E.格倫.夏倫柏格(E. Glenn Schellenberg)及其同事,針對這方面做了許多研究,在其中一項實驗中,他們將莫札特音樂換成了驚悚大師史蒂芬金(Stephen King)小說的錄音。這項做法看似奇怪,但夏倫柏格教授和他的團隊卻想藉此瞭解,是否音樂本身根本就不是重點。

其實,重點是要讓心情變好

也許在做智力測驗之前,只要播放任何讓人愉快的東西,就能使人擁有好心情,並因此表現得更好。由於參與測試的都是大學生,不可否認地,這些大學生可能只是對史蒂芬金的小說,跟對兩百年歷史的鋼琴曲一樣喜愛罷了。我相信,若是學生們事前先聆聽一段音樂或故事,而非安靜地坐著的話,也會在相同的「紙張未摺前應該是什麼形狀」測驗上,有較佳的表現。測驗結束後,這些學生必須表明自己比較喜歡聽故事還是音樂。較喜歡聽故事的學生,在聽完故事後所做的測驗分數最高;同樣地,較愛好音樂的學生,則是在聽完音樂後做的測驗分數最好。

因此,我們現在不必再費神搞懂,為何莫札特的音樂能神奇地重整大腦模式,讓它變得更有效率了。因為,這個「莫札特效應」不過是一個眾所周知的道理罷了──處於正面的心理狀態,就能增進智力上的表現。

《阿瑪迪斯》劇照。圖/imdb

所謂「正面心理狀態」就是好心情加上適度的刺激。這裡的「刺激」指的是與沉悶相反的情緒。如果你處於不夠刺激的情境(覺得無聊或昏昏欲睡),你的大腦就沒辦法做太多事,此時要是有人突然拿智力測驗給你做,成績自然就會不好。

相反地,你也可能受到太多刺激,如太過興奮或緊張等,如此也會導致表現不佳。只有在處於適度刺激的狀態下,也就是在聽了故事或音樂後,再接受測驗,才會有最佳表現。最重要的是,你若愈喜歡這個故事或音樂,心情就會愈好,而心情好也有助於增進表現。當你心情不錯時,多巴胺的分泌就會增加,據說這樣思考時就會更有彈性,解決問題和做決定的能力也會變強。

為了證實這一點,多倫多研究團隊開始嘗試在進行測驗之前,播放各式各樣的音樂,然後看看結果如何。不出所料,他們很快就發現了「舒伯特效應」,也就是出現了跟莫札特效應一樣的效果。雖然其他作曲家的作品也都產生了相同的效果,但研究團隊卻預測應該不會出現「阿比諾尼效應」。

義大利作曲家阿比諾尼(Tomaso Albinoni)是那種一曲成名走天下的音樂家之一,你或許曾聽過他那一千零一首作品〈慢板〉,但由於這首曲子實在太過悲傷和緩慢,因此不太可能讓你感到振奮,或是讓你擁有好心情。不用說,要是在做摺紙(剪紙)測驗前播放這首曲子的話,自然也就不會出現阿比諾尼效應了。

  • 其實,阿比諾尼恐怕是音樂史上唯一的「無曲」成名者。因為就連那首〈阿比諾尼之慢板〉,也極有可能是出自一九五○年代義大利音樂學家兼作曲家雷莫‧賈佐托(Remo Giazotto)之手。

在當初的測驗中所播放的莫札特作品,乃是以大調譜寫且曲速稍快,因而給人一種歡快的感覺。多倫多研究團隊曾嘗試以較緩慢的速度,以及將它變成小調(我們知道小調會激發較為悲傷的情緒)等方式,播放這首曲子的不同版本給受測者聽。他們用了各種版本做測試後,證實曲速較快的音樂更具激勵效果,而大調樂曲則會讓人心情更好,因此,速度快的大調樂曲就會讓人們在測驗時擁有最佳表現。

圖/pexels

之後當研究團隊在多倫多再也找不到受害(測)者時,便決定入侵英國。他們說服英國國家廣播公司(BBC),協助他們同時為大約兩百所學校裡近八千名學童做測試。他們將每一所學校中的十到十一歲學生分為三組,並分別集中在三間教室裡,且每間教室都準備了一台收音機。

  • 第一組學童聽的是BBC第一電台(Radio 1)播放的流行樂團Blur的歌曲;
  • 第二組聽的是BBC第三電台播放的莫札特作品;
  • 第三組聽的則是心理學家蘇珊‧海拉姆(Susan Hallam)探討他們正在做的這項實驗的錄音。

在播放完畢後,學童們做了兩項關於空間能力的測試。在這項針對好心情(刺激)理論所做的實驗中,一如我們所料,這些學童在聽過最能刺激他們且最喜歡的播音內容後,所做的測驗結果也最好──因而現在又多了一個「Blur效應」了。

這一切重點在於,在接受下一個腦力挑戰前,你聽的是什麼內容並不重要,不論是莫札特、Blur的音樂作品還是史蒂芬金的小說都行,只要是你喜歡又具有溫和刺激效果的東西,就能短暫地提升大腦的性能。

進行這些測試的目的,是為了瞭解當人們因為聽了某些東西,導致精神與情緒變得更為高昂時,會產生什麼效果。雖然我們的精神和情緒通常是同時起落,但兩者卻並非總是息息相關。你可能既開心又想睡,也可能既開心又興奮。你的心情隨時都跟大腦分泌了多少多巴胺有關,而精神卻跟另一種截然不同、稱為「正腎上腺素」(norepinephrine)的化學物質有關。

大腦中可以以正腎上腺素為神經傳導物質的區域。圖/wikipedia

 

為了將情緒和精神這兩種心智效果分開來看,心理學家賈本葉菈‧伊利耶(Gabriela Ilie)以及威廉‧福德‧湯普森在二○一一年時,找了幾組人進行了一項實驗。他們請實驗對象在聽完為時七分鐘的古典鋼琴曲錄音後,接受幾項心理和創意測驗。其中有些人覺得這首鋼琴曲彈得很大聲、快速且音調高;有些人反而覺得這首曲子音量小、速度慢且音調低;至於其他組別則在音量、速度和音高上有各種不同的看法。此曲的節拍最具有提振精神的效果(較快的曲速所產生的刺激效果最好),而音高對情緒效果來說則比較重要(音高較高的曲子最能使人們感到開心)。因此這首樂曲在各組中,產生了不同程度的精神和情緒提振效果。

蠟燭測試。圖/wikimedia

至於這些實驗對象所做的創意測驗,則是由心理學家當肯(Dunker)所提出的一項著名的蠟燭測試,以及麥爾(Maier)的雙索測試。在蠟燭測試中,受測者會拿到一盒圖釘、一組火柴棒,還有,想當然,一根蠟燭。受測者必須利用手中的物品,以避免讓蠟油滴到地板上的方式,將蠟燭固定在牆上。

(假如你現在有興趣的話,可在往下讀之前,先小試身手一下……)

這項測驗的標準答案是取出兩根圖釘,並扔掉其餘圖釘後,將空盒釘在牆上,然後再將蠟燭黏在盒子上。

圖/pxhere

至於雙索測驗則比較難搞,要是在做測驗當天剛好又沒什麼靈感的話,就更傷腦筋了。研究人員在天花板上掛了兩根不同長度的繩索,受測者必須要將兩根晃動繩索的尾端綁在一起。而難搞之處就是,你在抓住了一根晃動的繩索後,便無法碰到另一根。而你所能使用的輔助工具,就只有一把剪刀和一張椅子。

(同樣地,在往下讀之前,你可先小試身手一下……)

我相信有些人會想到利用椅子,但其實並不需要。只要把剪刀綁在其中一根繩索上,然後讓它擺盪起來,接著,在抓住了另一根繩索後,等第一根繩索向你擺盪過來時,再把它攔截住。一旦兩根繩索都抓住後,就可以輕鬆地將兩端綁起來了。

最後一項測試則不太需要創意,這項簡單的腦力活動只要速度快便能完成。在電腦螢幕上有四百零八個幾何圖形,受測者必須找出並點選那個出現了五十八次的圖形。

心情好,創意佳,刺激就有好精神

那麼結果如何呢?是這樣的,當音樂並沒有讓情緒變得比較好,但卻大幅地提振了受測者的精神時,這些人在最後一項簡單的速度測試上的表現相當好,而在蠟燭和雙索試驗上表現較差。相反地,那些沒有得到什麼精神刺激,但情緒卻大幅改善的測試者,則在創意測驗上的表現較佳,而在簡單的圖形測試上反應較慢。因此,這項實驗的兩個結論是:

一、情緒改善能讓人變得更有創意;

二、增加刺激能讓人在簡單的思考活動上反應較迅速。正如我之前說過,當我們在聆賞音樂時,情緒和精神通常會同時起落,讓你兩種好處一次滿足。

目前,我們所探討的是在接受測驗前,聆聽音樂所產生的效應。但要是在你需要思考和專心做某件事,例如唸書或是填報稅單時播放背景音樂的話,又會如何?

 

本文摘自《好聲音的科學:領袖、歌手、演員、律師,為什麼他們的聲音能感動人心?》本事出版,2017 年 10 月出版。

The post 聽古典音樂讓你變聰明?「莫札特效應」是真的嗎?──《好聲音的科學》 appeared first on PanSci 泛科學.

愛滋病的新增患者越來越多?數據能告訴我們哪些事?

$
0
0

數據會說話,從衛服部疾管數的愛滋病數據統計資料裡,我們可以看出什麼呢?

新的愛滋患者數量逐年攀升,該如何解讀?

圖 1:台灣歷年愛滋新增患者人數變化。2018 年統計至 2018/11/01,2018 年尚未結束,但推測該年度人數應會大幅下降。
圖/本文作者 (1)

整理台灣歷年愛滋病新增患者人數,從上圖 1 可發現到,台灣的愛滋患者新增個案逐年攀升 (1) [註 1-3]。而進一步觀察,我們從數據裡面發現(下圖 2),25-34 歲年輕人的新增個案,相較於其他年齡層的人數明顯地逐年遞增,2012 年從每十萬人新增 25 名患者,成長到 2017 年每十萬人新增 35 名患者。

年輕及適婚年齡的愛滋新增患者越來越多,這有可能代表疫情失控了嗎?

圖 2:台灣 2012-2017 年,各年齡層每十萬人之新增感染人數。
圖/本文作者 (1)

表 2:台灣 2012-2017 年,各年齡層每十萬人之新增感染人數 (1)

是該驗的都驗出來了?還是疫情逐漸擴散?

理性地分析這些數字,帳面上的新患者數量增加,其實不見得表示愛滋病的疫情惡化。

有可能是更多過去隱性的患者願意自動篩檢,無論具名或匿名檢查,在政府大力推廣愛滋病衛教政策的趨勢下,盡可能使得所有疾病高風險族群自願地進入正式醫療裡以增加防疫機會。而過去疾管署也針對此趨勢給了解釋:「擴大篩檢,通報人數有些微上升,但這是揪出黑數,非疫情惡化」(2, 3) [註 4]。

果以 2017 年以前的數字來對比 2018 年目前顯現的趨勢,2018 年的統計人數雪崩式下降,讓我們相信「揪出黑數」的說法可能是真的。深入探討原因,我們發現近年來政府整合公私資源提供了便利及隱私兼具的檢驗途徑和對於愛滋防疫觀念的正向宣導,成功讓更多「願意走出來」的患者被發現,因此在 2018 年逐漸收到成效。換言之,簡單的案例都被找出來了,剩下的就是超困難的個案。但由於沒有其他更有利的佐證資料,所以無法驗證疾管署的說法(如:多做了哪些宣傳檢驗?做多少?或是喝多少蜂蜜檸檬?)。

退一萬步想,如果我們假設疾管署的說法正確:「更便利的檢驗和宣傳讓更多患者被發現」。那麼就有個奇怪而且值得討論的現象需要思考,那就是:

這些更便利的檢驗和宣傳,為什麼「只讓」25-34 歲的年輕人浮上檯面呢?

從圖 2、表 2 中可看出,「揪出黑數」的成效在 25-34 歲族群有了極佳的表現,但在其他年齡層,例如 15-24 歲的青少年朋友,卻沒有明顯的變化,這又是為什麼呢?

可能的原因之一是「疾管署針對 24-35 歲年輕人找到了適合且正確的衛教管道/意見領袖/交流平台,但這模式也許不是其他年齡層在接受相關衛教資訊的適用方式」,例如:疾管署推動「超商宅配在家自我篩檢組合」的貼心服務,舉凡電視媒體及平面媒體(四大報)皆廣為報導,但這個訊息傳播途徑(電視、網路新聞)早已不是青少年、國高中生喜好的平台(還不如找 YouTuber 小玉業配更有效)。

因此,在資訊揭露方式的年齡斷層下,這些年疾管署「努力找出隱性愛滋病患」的成效僅在 25-34 歲年輕人族群裡發揮較佳的成果。

寫到這裡,筆者必須承認在有限的資料中,以上的推測可能會是以偏概全的,但科學的解讀本來就需要多樣化的資訊和證據佐證,才能讓假設得到證實和合理的解釋。衷心期待未來疾管署能公開歷年篩檢數、檢出量和篩檢方式等資訊,甚至擴大舉辦討論會,集結社會大眾的觀點。讓民眾能真正解讀、了解這些疫情大數據背後的意義,甚至回饋集思廣益後的新發現給政府和民間團體,如此才能讓愛滋防疫擁有更多元及更有創意的新樣貌。

部分患者是在強制體檢下才知道感染了愛滋病

整體而言,政府對於愛滋防疫的成效還是有很大的進步空間的。我們從以下數據即可窺見愛滋檢驗和防疫宣導上的瓶頸。在 2017 年的愛滋新增感染者中,仍有 233 人是從役男體檢、捐血中心或監獄的檢查中得知的(圖 3)。換言之,部分患者可能不知道染病,或畏懼進入正式醫療管道,直到必須強制體檢的情況下才發現自己已經感染了愛滋病

推測可能的原因不外乎防治宣導不到位或出現資訊落差,導致宣導教育沒辦法遍及所有地區或族群,最終造成正確的防疫衛生教育無法落實,更沒有意識到自己可能或已經受到了感染 [註 5]。而這些「被動」篩檢出來將會造成「延遲就醫」、「疏忽安全性行為以致傳染給他人」、及「發病機率高」等潛在危機。患者在無自覺或畏懼就醫的情況下,可能會讓自己的病情惡化,甚至傳染給他人。政府或民間組織應該要深入研究並探討其中的因素,嘗試突破目前的瓶頸,以協助更多隱性或未知的愛滋病患走出來。

圖3:2017 年台灣新增愛滋患者篩檢來源。
圖/本文作者 (1)

永恆的課題:宣傳時怎麼找到正確的客群?

近幾年社群或新媒體有了非常快速的變化,各年齡層吸收新知的喜好和管道有顯著的不同。從數字上推測,愛滋病的宣導可能在年輕族群上遇到了瓶頸,以筆者在第一線進行愛滋防疫宣導的友人經驗得知,在部分學校進行衛教時會遭到老師的反對,指稱保險套的衛教將誘使青少年從事性行為(此荒謬的推論若為真,那保險套不就是拯救少子化的利器?);更有部分反同歧視團體試圖以守貞來取代性病的防治衛教,諸如此類「義和團式」的衛生教育和性別觀念一再地衝擊愛滋防疫宣導的教育現場,讓安全性行為和正確的性別平等教育形成極大的阻力。

青少年應該是吸收知識最快、接受外界資訊最便利的族群。如果如疾管署所言,近年來擴大宣導「揪出黑數」,然而數據卻顯示,宣傳效果並沒有發揮在青少年族群身上;青少年的新增個案比例卻沒有明顯的變化,這是一個值得眾人探討的現象。也許就如上述,愛滋防治宣導遇到了瓶頸,導致宣導教育無法落實,也或許還有其他具體原因造成部分的年輕人沒有接受到正確的防治教育,才會讓年輕族群持續受到愛滋病毒的威脅 [註 5]。

這兩年,台灣社會因進行婚姻平權修法而有了巨大的對立和紛爭。而愛滋病雖然與婚姻平權沒有關係,但在部分團體的輿論操作下,愛滋議題也重新被翻上檯面。這雖然不是一個良善的出發點,但也許我們可以利用這個契機,讓我們正視台灣社會對於愛滋族群的歧視和汙名化,同時督促政府公開更多資訊、促成更多的研究與討論。如此始能讓社會漸漸地以正確的知識消彌歧視,也才能夠真正地降低、甚至根除愛滋病的威脅。

圖/Flickr

本文感謝台灣關愛之家協會執行秘書馮一凡、衛生福利部台東醫院檢驗科張昱維 (Yu-Wei Chang) 協助

  • 註1:此處指感染也存活的患者,數據計算至2018/11/01。
  • 註2:嚴格來說,本文所敘說的病毒的名稱是人類免疫缺陷病毒(HIV),感染此病毒的人類稱為 HIV 帶原者,而如果此病毒在人體內肆虐,使疾病惡化後才會被稱為愛滋病,又稱後天免疫缺乏症候群(AIDS)。因此嚴格來說愛滋病是疾病的名稱,而非病毒的稱呼。但在中文的使用者習慣中,似乎會將兩者混用。
  • 註3:2018 年尚未結束,但推測該年度人數應會大幅下降。
  • 註4:當然也有可能是政府隱瞞數據,但對於疾病的相關科學數據,我相信官方的說法。
  • 註5:此部分的論述需要更詳細的資料進行交叉分析,比方新增感染者和發病者的工作地區、教育狀態、生活環境壓力等,才能進一步判斷本文之假設是否正確。

參考文獻

  1. 中華民國衛生福利部疾病管制署愛滋病統計資料
  2. 愛滋感染年增2400人 揪黑數非疫情惡化。TVBS news。
  3. 愛滋感染年增2400人 揪黑數非疫情惡化。中央社。

The post 愛滋病的新增患者越來越多?數據能告訴我們哪些事? appeared first on PanSci 泛科學.

電腦裡的小宇宙,重現絢麗的恆星爆炸!

$
0
0
  • 採訪編輯|歐柏昇 美術編輯|張語辰

本文轉載自中央研究院研之有物,泛科學為宣傳推廣執行單位

天文學家無法做實驗來製造一個宇宙,卻可以在超級電腦中製造小宇宙,探索宇宙中複雜的現象。中研院天文及天文物理研究所的助研究員陳科榮,利用電腦模擬,揭開觀測背後的物理過程,了解超新星爆發的機制,以及超新星與宇宙學的關聯。

一般人對於天文學家的想像,是拿著望遠鏡觀測宇宙的仰觀者。陳科榮是大家較不熟悉的另一類型:模擬天文學家。
攝影│張語辰

模擬天文學家的望遠鏡:超級電腦

對於模擬天文學家而言,超級電腦就是望遠鏡。我們可以在超級電腦裡模擬我們的小宇宙。

為什麼研究宇宙需要用電腦模擬呢?陳科榮說明,物理、化學研究可以在實驗室裡做測試,但是天文學家不可能自己做一個宇宙出來,必須仰賴電腦來做實驗。

用電腦模擬來研究宇宙,其基礎在於我們對物理的理解。我們覺得牛頓定律、電磁學等在宇宙其他地方也適用,就可用數學、物理的方程式,推算宇宙星體經歷的過程。然而,宇宙中的許多系統很複雜,沒辦法用人腦、用筆去算。因此,把物理方程式寫成程式,讓超級電腦計算。

何謂「超級電腦」?陳科榮解釋,當一台電腦的記憶體、運算速度,大約是一般筆電的超過一萬倍以上,就可稱做超級電腦。也就是說,在一般筆電要花一萬個小時的計算,在超級電腦只要花一小時。近年來,電腦運算速度越來越快,幫助我們處理更複雜的問題。

「模擬」是根據基本數學、物理建構出來,製造一個虛擬的世界。虛擬世界跟實際世界是否真的相關聯,這就需要驗證。

陳科榮舉了工業上的例子,說明電腦模擬的應用。過去沒有電腦模擬,若要測試新型汽車的效能,就會先製造一個實體的模型車,放在「風洞」裡,讓風吹向車子,觀察流線的分布,來判斷模型是否優良。現在不必花高成本製造模型車,只要用電腦模擬,計算流體力學,就可以了解流線的情況。確定模擬出的最佳結果之後,才需要做出實體的模型車,再放到風洞裡做實驗,省下了很多開發資源。

用電腦模擬,追探觀測背後的玄機!

用電腦模擬來研究天文,可以幫助我們了解:天文觀測到的現象背後,到底發生了什麼事。

陳科榮說明,我們一般看到宇宙都是看到「光」,光會帶來很多訊息,但有時比較表面。就像我們在大樓裡面討論事情,有些訊號可能會傳到大樓外,但是大部分的光線都被牆壁擋住,大樓外面的人無法得知我們在做什麼。

例如,超新星爆炸是發生在恆星內部的過程,我們只能看到爆炸後的現象,卻也想了解超新星爆炸內部的過程。做模擬的天文學家,便試著去探索背後的機制,了解爆炸怎麼產生。

以上方影片為例,這是陳科榮模擬「磁星」(magnetar) 的超新星爆發過程。簡單來說,中間有個很大的中子星,中子星放出的輻射促成了超新星的第二次爆炸。這種超新星爆炸會發出非常亮的光,且在輻射機制的加速過程中,被推出來的物質會承受流體的不穩定性。一開始小小的不均勻,可成長出「渦流」(eddy),形成大尺度的不穩定結構。

陳科榮發現,磁星的超新星爆炸機制,模擬出來的結構,竟然與下方右圖的蟹狀星雲非常像,推測蟹狀星雲可能是由這種爆炸機制形成。

磁星 (magnetar) 的超新星爆炸機制,左圖模擬出來的結構,與右圖的蟹狀星雲(紅框處)非常像。
資料來源│左圖:陳科榮,右圖:NASA, ESA, J. Hester and A. Loll (Arizona State University)

陳科榮再舉一個爆炸模擬,如下方影片所示。一般想像的爆炸是四面八方擴散,但其實有種不均向的超新星,稱為極超新星 (hypernova)。爆炸能量主要集中在南北極,產生噴流的結構形成極大的不對稱性。這就像是大砲把恆星轟一個大洞,整顆炸開。

化作春泥更護花──超新星與宇宙學

陳科榮在博士班三年級的時候,得到一個獎學金,去德州大學做研究,開啟了宇宙學和超新星關聯的研究旅程。超新星對宇宙有何影響呢?陳科榮引用詩句來詮釋:

落紅不是無情物,化作春泥更護花。

星星就像是一朵花,這朵花是由它的泥土滋養而來。超新星爆炸時,這朵花就散落了,但是花瓣回歸到泥土,就繼續滋養下一代的花長大。超新星也是一樣,散出去的物質,變成之後下一代星星成長所需要的元素。因此,超新星是宇宙、恆星生命週期中的重要過程。

宇宙很大,恆星很小,恆星卻能影響宇宙。這就像是人體很大,細胞很小,但是細胞發生問題,可能會影響到整個人體。恆星、超新星、宇宙之間的關聯性相當重要,但因為跨越了巨大的物理空間,是不易研究的課題。

為求了解恆星對宇宙的影響,陳科榮做了宇宙結構的模擬,如下方影片所示。首先,恆星會發光,將周圍氣體加熱、游離化。如果恆星死亡後直接變成黑洞,氣體會慢慢冷卻。但若恆星變成了超新星,則會發生許多有趣的變化。

在超新星的爆炸過程,會見到「紊流」這個現象。無序的紊流,是普遍發生於自然界的擴散過程。例如,滴下一滴墨水,很快地,杯子裡的水都變成藍色。其實短短時間內發生的物理過程很複雜,出現了「瑞利 – 泰勒不穩定性」等現象,使得流體混合在一起。透過下方的電腦模擬影片,我們可以仔細品味其中的過程,以及無序之美。

  • (紊流影片來源│謝宜達提供)

難以入眠的模擬天文學家

宇宙星體很美麗,卻看似離實際利用較遙遠,那研究目的是什麼呢?陳科榮認為,研究基礎科學最重要的動機,是對人類知識做出貢獻,滿足人類的好奇心、求知慾。是否能夠拿來賺錢,總是往後才應用出來的事。

陳科榮舉例,電磁學之父法拉第發明了「電場」的概念,國王問他,這個東西對國王有什麼用?法拉第回答,他也不知道這能幹嘛,但是相信它未來會貢獻國王的稅收。後來,全世界一半以上的產值都和「電」有關。研究天文、宇宙,現在也不知道馬上能夠拿來幹嘛。

但若未來人類要去外太空旅行,也許就能知道要避開哪些爆炸的超新星。

談到研究的甘苦,陳科榮說,其實研究大部分時間都是苦的。一個研究結果出現,經常是失敗過很多次了。不過,痛苦與樂趣是相對的,如果沒有痛苦,就不會覺得快樂。如果有問題在腦中徘徊,經常睡覺就沒有睡好,但是想到答案時就很高興。他也有忙裡偷閒的方式,像是在美國時,有時自己一個人開車到山上躲個幾天,調劑身心。

模擬天文學家的另一項樂趣,是把研究成果作為藝術。超新星模擬結果的圖片,經常讓人感到新奇,容易登上新聞版面。陳科榮也常用模擬結果作為素材,創作出富有哲思的藝術品。

這是陳科榮相當自豪的一個超新星爆炸模型。過去他在加州大學聖塔克魯斯分校時,學校正好舉辦 50 週年校慶,選了他的這幅作品做成大型看板,擺在舊金山市區,配上標語 “Who says you can’t crack open a star?"(點圖放大)資料來源│陳科榮

這幅作品是把兩個不同的模擬結合在一起,外層是超新星爆炸的結構,裡面是宇宙的結構。納須彌於芥子,把一個很大的結構容納到一個非常小的尺度。陳科榮認為宇宙就是這樣:「一沙一世界,一花一天堂。」(點圖放大)
資料來源│陳科榮

另一方面,陳科榮認為,能夠當科學家是得到一種「優待」,可以做自己喜歡的事,又有薪水過活;在研究上,自己就是自己的「老闆」,是個自由的工作。

相對地,科學家也有許多義務,不僅要做好研究,對人類知識做出貢獻,也有一些社會責任:將知識傳承下去,教育下一代。陳科榮回到臺灣之後即身體力行,在中研院成立了「爆炸小組」,帶領學生一起做研究,希望幫助學生,並且讓研究環境變得更好。

陳科榮與「爆炸小組」的快樂小夥伴。
照片來源│陳科榮臉書

延伸閱讀

本著作由研之有物製作,原文為《電腦裡的小宇宙,重現絢麗的恆星爆炸!專訪陳科榮》以創用CC 姓名標示–非商業性–禁止改作 4.0 國際 授權條款釋出。

本文轉載自中央研究院研之有物,泛科學為宣傳推廣執行單位

The post 電腦裡的小宇宙,重現絢麗的恆星爆炸! appeared first on PanSci 泛科學.

對真菌有許多疑問嗎?解答都放在這裡了!──《菇的呼風喚雨史》

$
0
0

常見於居家環境的真菌有哪些?

台灣溫暖又潮濕,真菌最愛的家

真菌(或通稱為黴菌)幾乎可以生長在任何東西上面,只要是溫暖又潮濕的地方,就很容易孳生黴菌。臺灣地處熱帶與亞熱帶之間,四面環海,雨量充足濕氣重,是黴菌生長的最佳環境。所以,一般我們的建材與家具都會添加殺菌劑,否則家具與牆壁就會被真菌破壞殆盡,例如在潮濕房間牆壁上常出現紙齦枝孢(Ulocladium chartarum)。因此,如果從未在家具上發現黴菌蹤跡,有可能是居家環境很乾淨,也有可能是家具添加了殺菌劑,黴菌都被毒死,無法生長──也就是家具很毒的意思。

圖/《菇的呼風喚雨史》p.184

黴菌會讓食物腐敗,或是長在家具、衣物、皮鞋、皮包、浴室內(矽膠上常見的黴菌種類為球孢枝孢)以及牆壁上,吸入太多黴菌對人體健康有害。居家最常見的應該是屬青黴菌(Penicillium spp.)。青黴菌約有一百五十多種,可以產生抗生素青黴素(或稱盤尼西林),是二戰時用於受傷士兵身上的重要藥物。但是,青黴菌也造成農產品或建材分解腐敗,且會釋放孢子造成過敏,危害人體健康。麵包,尤其是吐司上的黴菌大多屬於枝孢菌屬(Cladosporium spp.)、麴黴屬(Aspergillus spp.)、青黴菌屬、鬍鬚黴屬(Phycomyces spp.)或是匍莖根黴菌(Rhizopus spp.)。如果買來的吐司好像很不容易發黴,那是因為加了防腐劑。

大量孢子讓你病,黴菌生長伴隨的危險

黑黴菌(或匍莖根黴菌)也是居家內外常見的黴菌。黑黴菌會引起過敏反應,更嚴重的是,如果其分生孢子侵入腦神經系統,就會導致分生孢子菌症的疾病。這種黴菌也被認為是「大廈綜合症」(Sick Building Syndrome)的可能病因,大樓的中央空調讓真菌更容易傳播。免疫力較弱的孩童,如果長期暴露在含有大量黑黴菌孢子的環境中,就會導致肺出血,並且引起呼吸系統的疾病。如果孢子濃度高,還有可能會造成腦神經嚴重損傷。

麴黴菌和青黴菌一樣,也會產生大量的分生孢子,這些孢子會隨著氣流四處飄散,如果掉落在適合生長的有機物上,例如穀物或是飼料上,再加上適合的溫濕度,就會開始萌芽生長,生長的過程會伴隨產生有毒的黃麴毒素。另外,還有腐黴菌(金黃擔子菌屬,Aureobasidium spp.),也很常在住家的牆壁上出現,如果家中牆壁黏貼的是壁紙,就可以看到明顯的紫紅色黴菌斑點。腐黴菌也會造成食物腐敗(麵包或是米飯等),若不慎食用,會引起食物中毒。

空氣中的大量孢子會引發某些人的過敏反應。圖/@pxhere

木黴菌也是環境常見的真菌,存在於土壤裡,不過其分生孢子會飄散在空氣中,在加上溫暖潮濕的氣候(通常是多雨的季節),就會出現在木質建材或家具上。其菌落的外觀為綠色,因為會產生大量的纖維分解酵素,讓紙張與木材變質脆化,因此造成木質家具與建材使用年限縮短。大量的木黴菌分生孢子,亦會引起某些人的過敏反應。

其他居家常見的真菌,還有長在草莓上,造成葡萄灰黴病的灰黴菌,以及讓蘋果腐敗的果腐病菌,與長在紙板或是木板裝潢上的紙板葡萄穗黴(Stachybotr ys chartarum)。

黴菌除了會引發食物中毒與過敏之外,還會造成其他疾病危害。像是「癬」,常發生在皮膚的表面、指甲內、頭皮甚至生殖器等部位,主要是由皮癬菌(Epidermophyton floccosum)、皮屑芽苞菌(Pityrosporum sporumovale)或是念珠菌(Candida spp.)等引起。因為氣侯的關係,「癬」在臺灣是很常見的皮膚疾病之一。另外,根據統計,超過 90% 的慢性鼻竇炎患者對黴菌有過敏反應。黴菌的孢子因為體積微小,藉由空氣傳播,四處飄散,很容易隨著我們的鼻腔進入呼吸道,並一路到達肺部停留。流行病調查也發現,有大約 10% 的過敏性氣喘患者,其氣喘症狀是來自於黴菌過敏。

唉呀,發霉了!該怎麼辦?

食物發黴還能吃嗎?

食物一旦發黴就不能吃了,即使將表面的黴斑移去,黴菌的菌絲也早已經深入食物內部,而黴菌所產生的毒素在生長時,也已經釋放到食物中了,有些毒素就算加熱也難以破壞。正確的作法是,只要懷疑食物發黴,就毫不猶豫的丟棄,因為我們的身體經不起黴菌毒害。還有,過期的花生即使外觀看起還沒事,也要丟棄,因為花生最容易有黃麴毒素殘留。

食物發霉就不要吃了。圖/pxhere

乳酪發黴還能吃嗎?

一般的乳酪發黴後就建議丟棄,因為一般的乳酪是用乳酸菌做的,不會長棉絮狀的毛(菌絲)。如果是白黴乳酪或是藍黴乳酪,因為是由青黴菌(絲狀真菌)所製成,而且在熟成過程,該菌已經變成了優勢菌種,理論上再長毛(菌絲)應該就是原來的青黴菌。

發黴的物品怎麼處裡?

對人體最無害也是最安全的方式,就是用 75% 的酒精來擦拭。浴室裡的黴,可以用稀釋的漂白水去除。

如何防止黴菌生長?

欲防止黴菌生長,最重要的就是控制溫濕度。乾燥低溫(低於 21ºC)的地方,不利黴菌生長。在多雨的季節裡,利用除濕機或是開冷氣來降低室內濕度,高溫的季節裡,讓容易發黴的物品晒晒太陽,利用自然的紫外線與高溫來殺菌。雖然也可以用化學的方式來殺黴菌,不過這些化學品既然殺得了黴菌,就代表對人體的健康同樣不利。

想吃也要有訣竅,菇菇愛好者注意了!

我家旁邊空地長了一朵菇,可以吃嗎?

三個字:不能吃。野菇不是野菜,許多都具毒性,運氣好,拉拉肚子,運氣不好可能就得進醫院。另外,菇類對環境相當敏感,生長的地方如果水或空氣不乾淨,菇會累積這些有毒物質。所以就算在大馬路旁長出美味的牛肝菌(雖然發生的機率很低),它應該也累積了不少汽機車排放的廢氣與重金屬,絕對吃不得。

路邊的菇類可以採來吃嗎?圖/@pxhere

子實體好還是菌絲體好?

坊間常見的菇類健康食品,有「菌絲體」和「子實體」之分,一般消費者可能不太能分辨其差異。菌絲體是菇的「無性世代」或是「營養世代」,子實體則是菇的「有性世代」,市場買到的菇,例如香菇和洋菇等都是子實體。「有性世代」與「無性世代」兩者的代謝途徑迥異,所以產生的二次代謝物也不同。有些菇因為產生子實體需要很長時間,或是沒辦法以人工方式誘發子實體產生,所以一些廠商就會以菌絲體來代替,例如冬蟲夏草或牛樟芝。菌絲體是利用發酵槽以培養液大量生產,生產成本較子實體低廉許多,還可透過調整培養液的成分來改變菌絲體的成分。孰好孰壞,實見仁見智。筆者認為,如有美味、營養又口感極佳的「子實體」(菇)可以食用,又何必選擇包成膠囊的「菌絲體」?

我可以在家種香菇嗎?

理論上可以,不過實際操作起來有困難。種香菇不像種花草樹木――澆水、施肥以及晒太陽就能成功。種香菇首先必須要有殺菌設備,例如壓力鍋,還要調配菇需要的生長基質,不同菇的生長所需不盡相同。操作時,必須在盡量無菌的地方,因為空氣中有太多懸浮的孢子,生長基質很容易被汙染。再來就是要取得菌種。菌種可以自己分離(對一般人來說,難度太高)或是購買,然後就是接種,還需要有涼爽的地方以供生長,走菌與出菇時的照顧更不可馬虎。總歸一句,去買別人(養菇場)準備好的太空包,是最省錢省時又方便有效的方式,能輕輕鬆鬆滿足當城市菇農的心願。

 

 

 

本文摘自《菇的呼風喚雨史》,積木文化,2018 年 11 月出版。

The post 對真菌有許多疑問嗎?解答都放在這裡了!──《菇的呼風喚雨史》 appeared first on PanSci 泛科學.

代糖真能代替糖?甜味劑是我們減肥的好夥伴嗎?

$
0
0
  • 撰寫.編譯/陳志今

甜食、飲料……大部分人應該都很喜歡在嘴饞時吃上一些富含糖分的食品。但糖分攝取過量已成為現代人的通病,更被視為減肥的大敵。

到底怎樣才能大吃大喝又不會增加卡路里攝取和肥油油的肚皮呢?

這個看似不可能的任務在甜味劑出現後有了新的可能。甜味劑號稱「能甜你的嘴、不肥你的胃」,相關廣告也常主打它們零卡路里的優勢,不過,甜味劑真的有那麼神嗎?

號稱「能甜你的嘴、不肥你的胃」的甜味劑真的有那麼神嗎?source: wikipedia

所以說,甜味劑到底是什麼?

甜味劑(又稱代糖)泛指能讓食物具甜味的化合物。跟一般糖類不同的是,糖分能夠被人體吸收並產生熱量(也就是俗話說的卡路里),但是甜味劑大多是無法被人體吸收的化合物,也因此可說是幾乎沒有熱量。

可樂、口香糖,甜味劑的蹤影無所不在

你喜歡隨手來瓶飲料嗎?現在許多飲料公司其實使用了多種合成的甜味劑,比方說大家熟悉的百事可樂,在千禧年初出版的 Pepsi One(以及之後的 Pepsi Max),就使用了名為安賽蜜 (acesulfame potassium) 的甜味劑。

「飯後嚼兩粒A*****無糖口香糖 使你口氣清新自然」聽起來很耳熟是不是?你可知口香糖也含有甜味劑嗎?

市面上的口香糖大都含有木糖醇 (xylitol),一種由植物裡萃取出來的天然甜味劑。木糖醇雖然比不上合成甜味劑來得甜,但在愛美人士和健康飲食的風潮下,近年也逐漸開始受到吹捧。

市面上的口香糖大都含有木糖醇。source: pxhere

甜味劑命運多舛的發展史

糖精的化學結構。圖/wiki commons

第一代甜味劑名叫糖精(Saccharin,拉丁文中的糖),1879 年由美國科學家 Constantine Fahlberg 所研發。糖精具有比蔗糖強 300 倍的甜度,曾一度在美國與歐洲造成轟動。不過,在 1960 年代因為它有安全上的疑慮(有人宣稱會致癌,但後來的研究否定這說法)而被美國食品藥物局查禁,後來解禁時糖精已不再受到歡迎。1

阿斯巴甜的化學結構。圖/wiki commons

取而代之的是第二代甜味劑:阿斯巴甜 (Aspartame),1965 年由美國科學家 James Schlatter 所發現,而這個發現其實源自於他某次不小心舔了沾有阿斯巴甜的試紙。(現在的實驗室可不會隨便讓科學家們親嚐不明合成物 XD)

阿斯巴甜有著容易合成和保存的優點,在糖精被禁後一舉成為最受歡迎的甜味劑。雖然直至今日都沒有任何證據顯示阿斯巴甜會造成人類疾病(比方說癌症),但某些人會對阿斯巴甜的代謝物產生後遺症,因此近年來,許多食品也減少了阿斯巴甜的使用。[1]、[2]

至於第三版的甜味劑安賽蜜 (acesulfame potassium) ,在前兩代甜味劑的經驗後,花了至少 20 年之久,直到 1992 年才被美國食藥局許可使用、1998 年才被許可加入飲料裡。1

而最新一款甜味劑:甜菊食物 (Stevia plant),早在四十多年前就被日本人發現,並廣泛使用在許多飲品中,但直到 2010 年才被美國與歐洲食藥署准許加在人工食品裡。2

又能減肥又防蛀牙,甜味劑好棒棒?

由於市面上主要能有高甜度的甜味劑都是人工合成,再加上第一二代甜味劑最初帶來的健康負面報導(事後證明僅是謠言一場),各國政府對於食品用甜味劑的許可早已不如二十世紀初來得寬鬆。從第一代甜味劑開發後,直到 2010 年之前,已有數以百計的動物實驗,以及醫療統計學來探討食品甜味劑是否會引發任何疾病。

不過,其實也有不少人認為甜味劑是有好處的,比如前文曾提及的天然甜味劑「木醣醇」,在研究數據中顯示可以降低近 30% 的糖攝取量、也被牙醫學界認可能夠降低蛀牙風險。2

牙醫學界認可木醣醇能夠降低蛀牙風險。source: flickr

另外,也有說法認為甜味劑能幫助減肥,原因無他:甜味劑將近沒有卡路里、具備比同重量的砂糖更甜數百倍等特性,讓它們在近年來成為各國政府公共衛生部門對抗肥胖的超級武器。

在肥胖成為通病的西方國家裡,英國、愛爾蘭、法國、與美國數州已相繼祭出「含糖稅」,用「增加含糖飲料單價」的方式,變相遏止大眾購買含糖高熱量的飲料,同時鼓勵飲料公司和消費者使用 0 卡路里(含有甜味劑)的新式飲品。

在肥胖成為通病的西方國家開始徵收「含糖稅」。source:  pixabay

以英國為例,各大通路商如果販賣含有卡路里糖分的包裝飲料,每一公升必須繳交至少台幣十元的糖稅。短短半年內,原版可口可樂和百事可樂等含糖飲料銷售額就應聲腰斬;而新版的無糖飲料,像是大家熟知的 Coke Zero 和 Pepsi Max,則開始銷售長紅。3

非萬能處方箋!甜味劑帶來的疑慮

「喝得再多也不會胖!」聽起來真是了不起的人類發明,可世上真有這麼好康的事嗎?令科學家和公共衛生專家最感困惑的是:

甜味劑出現的百年以來,為什麼所有人類社會,無一例外的,肥胖人口只增無減呢?甜味劑真的能遏止人類過胖嗎?

這個論點的起始點無怪乎:過去百年的研究主要注重於探討甜味劑加在食品裡是否有毒性──完全沒有,但鮮少有研究探討:若人體飲食中缺少糖分(或者是增加糖味劑的劑量)是否會引發飲食上的改變?當我們只有舌頭覺得甜,血液裡卻缺少糖分的情況下,大腦是否有可能會更加渴求食物?

血液裡缺少糖分的情況下,大腦是否有可能會更加渴求食物? source: imdb

這個假說到目前為止只有數字上的關聯(賣越多含甜味劑飲料的國家,青少年過重的比例不減反增),卻並沒有確實的科學研究佐證。不過,一個最新研究再次將科學家對甜味劑的隱憂搬上檯面。

在 2014 年,英國權威的《自然》(Nature) 雜誌刊登了一個令人驚訝的研究,指出甜味劑不僅會改變動物體內的腸道益生箘(生活在人體大腸、小腸裡,幫助分解食物與吸收的菌種),還容易誘發「葡萄糖不耐症」──也就是糖尿病的前端徵兆!4

這個研究由以色列科學家主導,其中使用數種不同的含甜味劑飲食來餵食實驗動物,結果令他們倒抽一口氣:在餵食數個月後,這些動物體內原本被移植的相同腸道菌種開始出現明顯的變化,不僅對後來追加的一般含糖食物攝取量改變,而且變相出現代謝疾病的症狀 4。而代謝疾病最常出現的,就是肥胖及糖尿病!

更進一步的研究更指出,在實驗的環境下,現在市面上使用的六種甜味劑,無一例外地都對腸道菌種有負面的影響 5。雖然這些實驗目前還尚未擴大至人類飲食研究,卻已經為全世界的公共衛生政策打了一個大問號。

或許最安全的減肥方式,還是那千古不變的老方法:均衡飲食、適可而止。

Reference

  1. The History, Synthesis, Metabolism and Uses of Artificial Sweeteners, http://monsanto.unveiled.info/products/aspartme.htm
  2. Are sweeteners really bad for us? http://www.bbc.com/future/story/20150127-are-sweeteners-really-bad-for-us
  3. Sugar taxes: The global picture in 2017, https://www.beveragedaily.com/Article/2017/12/20/Sugar-taxes-The-global-picture-in-2017
  4. Artificial sweeteners induce glucose intolerance by altering the gut microbiota J Suez, T Korem, D Zeevi, G Zilberman-Schapira, Nature, 2014 – nature.com
  5. Measuring Artificial Sweeteners Toxicity Using a Bioluminescent Bacterial Panel, Molecules 2018, 23(10), 2454; 

The post 代糖真能代替糖?甜味劑是我們減肥的好夥伴嗎? appeared first on PanSci 泛科學.

科學啊科學,你到底是什麼東西?──《「科學的思考」九堂課:學校不教的科學》推薦序

$
0
0

台灣在教育上非常重視科學的學科。

是的,是科學的學科,例如數學、物理、化學、生物。可是,我們有誰敢說,台灣的教育很重視科學呢?

其實很難說。台灣理科生,在科學知識上的素養,不見得比歐美學生差,可是在邏輯演繹、分析推理及批判性思考的能力上,和歐美學生比,確實有待加強。這些台灣教育長期忽略的部分,反而是歐美能在科學上持續創新的主因。儘管台灣不斷奉歐美為圭臬,並且有大量教授從歐美留學回國,但為何有些能力就是一直和歐美差距不小呢?

儘管台灣不斷奉歐美為圭臬,並且有大量教授從歐美留學回國,但為何有些能力就是一直和歐美差距不小呢?
圖/GIPHY

學校不教的科學

要把現代社會的一切從船堅炮利的歐美,移植到非原生的土地上,這是個大工程。過去亞洲最成功轉型為現代化國家的,當屬日本。即使日本在二戰犯下了嚴重的錯誤,仍然快速地復甦,甚至一躍成為一個富裕的文明國家。日本在科學研究上的不吝投資,從近年的諾貝爾獎得獎次數可見一斑。

作為一個在科學發展上領先的亞洲國家,日本有可借鏡之處。日本科學哲學家戶田山和久的《「科學的思考」九堂課:學校不教的科學》,是非常值得所有關心科學及科學教育的朋友一讀的好書。這本書讓我們真正瞭解科學究竟是什麼,以及科學的哲學意涵,而非停留在理解科學學科的知識而已。很多人看到「哲學」這詞,可能就會聯想到深奧,然而哲學的英文原意是「愛智慧」,就是不斷追問「為什麼」,然後不斷思辨而已。

書中介紹了重要的概念,如理論、事實、推論、假說、說明、驗證、實驗等,這些內容非常關鍵。市面上似乎還沒有像這本書一樣,用各種淺顯有趣的方式來說明科學是什麼的書籍。不少主修理工科的學生,也未能夠清楚地解釋好的理論和壞的理論的差別,這本書卻能教你清晰地說明。

容我打個比方,好的理論就像智慧手機一樣是多功能多方位的,不僅能夠打電話,還能夠用來上網、發訊息、玩遊戲等等。一個好的理論,能夠解釋的現象及範圍更廣,而且還能統合其他的理論,書中提到的牛頓理論就是個很好的例子。就像智慧手機統合了許多電子裝置,讓我們不必做一件事就要多買一個裝置,好的理論能把破碎片段的知識用一個系統統合起來。

好的理論就像智慧手機一樣是多功能多方位的,不僅能夠打電話,還能夠用來上網、發訊息、玩遊戲等等。
圖/pixabay

書中也詳細說明了,為何有些理論不需要在課堂上傳授。就像有了智慧手機,就不需要再買電話機、計算機、手錶、遊戲機、照相機、錄影機、指南針、筆記本等等。另外,書中也說明了為何偽科學在主流學術圈會沒有市場,因為自然科學不管有多少學科,其基本原理都不會互相違背,就像生物學的世界不會違背數學、物理和化學。然而,偽科學理論就像橫空出世的孤立系統,無法和已被一再驗證過的理論相容。這就像一支手機,只能打給同品牌的手機一樣,就算再酷再炫,會有市場嗎?

拜網際網路的方便和沒節操的媒體所賜,偽科學的新聞和消息,也常常伴隨長輩圖四處流竄。偽科學的另一個可惡之處,在於哄騙信任科學的民眾上當。很多偽科學的東西胡亂編造乍看之下高大上的科學術語,可是卻經不起科學方法的考驗,若只學了科學知識卻不懂科學方法,反而更容易上當受騙。如果讀了這本書,就很容易能夠理解,科學實驗及其極限在哪,為何我們在相信科學的同時,要能夠有批判能力地選擇不接受那樣的論述。

科學議題與科學的不確定性

科學並不是沒有極限的,在世上仍有許多事物,科學還未能完全解釋,甚至是無法解釋,例如宗教和人生的問題。《「科學的思考」九堂課》就指出,有所謂的超科學問題。簡單來說,這些問題要參考我們個人和社會的價值觀才能回答,而且也常常無法令所有人滿意。

因此,這本書介紹完科學的精神和方法後,便進入第二部,探討更困難的議題,像是日本三一一地震後所面臨的各種議題,這些日本的問題也令台灣人感到好熟悉啊!戶田山和久主張,這些議題必定要有公民的參與,不能只是把責任一味推給政府或專家而已。學者專家,只能從他們的專業中提供各種可能性,讓大家參考,科學家無法決定一個國家社會的價值觀,頂多只能參考主流的價值觀而提出建議,那這之間必然需要互相的溝通。民主社會沒有所謂的父母官,因為父母和孩子的關係是永恆不變的,可是進行決策的官員和議員,是由民主的方式選出,在任期內代表人民,他們不該是擅自作主的家長。

面對像是核能、氣候變遷、生態保育、基改食安等等的議題時,因為面臨到的是複雜的系統,具有更多科學上的不確定性,所以專家的見解就可能有所分歧。更麻煩的是,當科學面對社會和政治的需要,就更難是非黑即白。即便如此,為了要更有效達成大家的目標和共識,我們更需要瞭解科學,而非固執己見。無論是學者或公民,都想要世界更美好,例如有更多乾淨又安全的能源和食物等等。像是書中提到的基改作物問題,主要並非出在影響健康,而是在其他社會價值的方面,那麼散播不實謠言攻擊基改作物危害人體健康,這種無的放矢並不會讓食品變得更安全,甚至還會有反效果。

科學燈塔指引著我們去認知世界

除了瞭解科學,從《「科學的思考」九堂課》可以清楚看出,日本這個大多數台灣人嚮往和欣賞的國度,其實在教育和社會上也有不少與台灣很相似的問題,即使日本在很多方面已經比台灣先進不少。科學與偽科學的戰爭也好,公民議題的大亂鬥也好,是永遠不會停歇的,因為只要有人,就有多元的需求。如果我們認定科學是好的,那就讓科學有更多的參與就好,讓那些不科學的邊緣化吧。

在科學方法的引領下,這世界其實還是往更進步的方向前進。無論是我們享受的物質生活、便利性或健康衛生,都有明顯的大幅提升,而對世界的認識也一直在增進,我們實在沒有悲觀的需要。科學無法解決的問題似乎變多,但那也可能是因為科學解決掉的問題實在太多了,所以還沒解決的問題比例上升,才會讓我們有科學似乎愈來愈不行的錯覺,我們應該理性地認識到這點!現在和未來,科學都會是我們認知世界的一盞明燈!

現在和未來,科學都會是我們認知世界的一盞明燈!
圖/pixabay

本文為《「科學的思考」九堂課:學校不教的科學》推薦序。

The post 科學啊科學,你到底是什麼東西?──《「科學的思考」九堂課:學校不教的科學》推薦序 appeared first on PanSci 泛科學.

左腦人?右腦人?別再用過度簡化的二分法──《為什麼有點變態,反而很可以?》

$
0
0

左腦人?右腦人?這種二分法真的對嗎? 圖/ElisaRiva @Pixabay

關於大腦,一個最常見的迷思(大概就和「人的一生當中只使用了大腦的 10%」這個謠言一樣熱門)是:人類可能有左腦人和右腦人之分。根據這個迷思,你的個性和「認知方式」會由你哪一邊的大腦比較強來決定,而左右兩邊大腦有明顯不同的功能,左腦據說主管分析和語言,右腦則負責創意和情感。這個迷思到底是從哪裡來的?又有多少真實性呢?

地球分南北,大腦分左右?

首先,大家必須先理解左腦和右腦是什麼。這是指大腦的左半球和右半球,就和一般人常見的大腦圖像一樣。

圖/遠流出版提供

左右半腦構成大腦皮質,而大腦皮質是腦部最大、最外層的部分,分成左右兩個半球,中間以一道溝(或說裂縫)分隔兩半。正常來說,左右半腦之間會以神經纖維束作為橋梁連接,尤其是稱為「胼胝體」(corpus callosum)的神經纖維束,裡頭有超過六億個神經纖維,左右半腦便是藉此溝通、協同合作,而外在世界的感知訊息也會因此同時進入左右半腦,所以左右半腦通常會獲得等量的訊息輸入

人腦的正中橫切面,胼胝體是圖正中白色的弧形結構。 圖/wikipedia

有鑑於此,好奇心旺盛的科學家們自然會想知道,如果胼胝體斷裂,而形成所謂的「裂腦」,會發生什麼事?於是,美國神經心理學家斯佩里(Roger Sperry)在 1960 年代開始實驗裂腦的貓隻(他後來以這項研究獲得諾貝爾獎),最後,他和認知神經科學之父葛詹尼加(Michael Gazzaniga)受邀在人體上進行實驗,受試者為患有可導致殘疾的癲癇病人,為了減緩症狀,兩人透過手術切斷了患者的胼胝體,造就出一連串影響深遠的研究。

實驗證明,左右腦的功能的確有所不同,最明顯的發現是,大多數病人的右腦難以製造語言。這些實驗的結果很細微複雜,若是直接刊登在科普報導裡頭,勢必晦澀難懂,於是,許多過度簡化,甚至以偏概全的學說開始流傳。

偏側化只是小區域的局部現象

輕易將大腦分為左右,並將人格分為理性與感性,是粗略且危險的二分法。 圖/Arcaion @Pixabay

1973 年,《紐約時報週報》(New York Times Magazine)刊登了一篇千古留名的文章,標題為〈我們是左腦人或右腦人〉(We Are Left-Brained or Right-Brained),開頭便寫道:「我們的腦袋住著兩個極為不同的人(中略)……一個擅長語言、分析,一個擅長藝術……。」在這之後,《時代雜誌》(Time)、《哈佛商業評論》(Harvard Business Review)、《今日心理學》(Psychology Today)也刊登了類似文章,這個廣為人知的科學迷思就此誕生!左腦和右腦的分野,如今已成為「認知方式」最籠統的概論:左腦是聰明但無趣的會計師,有自閉傾向;右腦則是呆呆傻傻但心靈奔放、情感強烈、有創意的藝術家。但斯佩里本人也提出警告:「實驗觀察到的左右腦認知方式二分法只是個大致的概念,這樣的二分法很容易失控。」斯佩里如果地下有知,大概也沒料到自己的學說竟然會失控到這種程度吧?

此後,心理學家一再指出左右腦二分概論的謬誤。2013 年,一份明確的證據出現於猶他大學(University of Utah)神經科學家的研究中。他們掃描了超過一千個人的大腦,得到的結論是:「腦部功能的偏側化 [1] 顯然只是發生於小區域的局部現象,而不是整個腦部網絡的普遍特性;研究數據無法佐證人的整體腦部表型(phenotype)有出現左腦比較優勢,或右腦較占上風的情況。」換句話說,某些功能的確與大腦某些小區域的活躍活動有關,但並沒有證據顯示人的某半腦強過另外半腦

打破左右分野,柯斯林提出新分法

頂尖認知神經科學家費德梅爾(Kara D. Federmeier)則表示:「看起來比較安全的說法是:大多數情況下,我們幾乎每次都是同時使用左右兩邊的腦。」儘管「裂腦」病人的腦部的確在某些區域有差異,但也不是分得那麼涇渭分明,也就是說,雖然右腦無法言語,但仍然會參與處理語言的某些層面,例如語調和重音。另一方面,有別於「右腦有創造性、左腦缺乏想像力」的普遍認知,葛詹尼加從裂腦實驗得到的結論是:左腦才是「創造力、敘述能力」的中心。

既然各種理論都無法周延,或許打破左腦和右腦的分野會有幫助。頂尖認知心理學家柯斯林(Stephen Kosslyn)和米勒(Wayne Miller)合寫了一本《上腦與下腦:人類思維方式新洞見》(Top Brain, Bottom Brain: Surprising Insights into How You Think, 2014),他們提出另一個方法來取代左右腦的分法,強調:「上腦負責擬定計畫,以及在情況不如預期時修改計畫;下腦則是分類、解讀我們所感知的事物。」

注解:

  • [1]:即腦側化(lateralization),意指左右腦各有專司職掌。

 

本文摘自《為什麼有點變態,反而很可以?》,2018 年 3 月,遠流出版。

The post 左腦人?右腦人?別再用過度簡化的二分法──《為什麼有點變態,反而很可以?》 appeared first on PanSci 泛科學.


為什麼電影越可怕,越多人喜歡?──《為什麼有點變態,反而很可以?》

$
0
0

嚇人的恐怖驚悚電影,人氣始終居高不下,這產生了一個心理上的矛盾:為什麼電影越可怕,越多人喜歡?

其他受歡迎的恐怖娛樂還包括鬼屋秀、恐怖故事(影集)、驚險刺激的雲霄飛車,這些娛樂提供了多元的體驗,有的是一步步累積的陰森恐懼;有的則熱愛突如其來、冷不防的驚嚇。這些驚險、刺激、甚至令人作嘔的感受不一而足,所以或許無法用單一簡單的答案,來解釋人們為什麼喜歡恐怖電影。例如,研究恐怖電影若只鎖定砍砍殺殺的血腥片,並排除那些以營造心理驚悚取勝的作品,就會陷入困境。不過,裡頭顯然有些共通的現象與作用,心理學有辦法解釋嗎?

2017 年引起話題的恐怖電影《牠》。儘管大家都被嚇個半死,討論熱度仍然不減。 圖/IMDb

恐懼是演化而來的避險機制

說到恐怖電影及其激起的情緒,首先一定要提到「恐懼」,這是恐怖片予人最普遍的情緒之一,在跨文化之間具有高度的一致性。例如,一位西方電影觀眾可能看不懂韓國的喜劇片,因為裡頭有大量異國的社會文化比喻,但他幾乎毫不費力就能看懂、回應韓國的恐怖電影。從這種共通的恐懼文化,大概可看出天生情緒反應的演化起源。

2010 年京都大學的心理學家正高信男(Nobuo Masataka)等人進行了一份研究,證實了所謂「先備學習」效應 [1]。研究顯示,城市出身、年僅三歲的孩童一眼就能看出螢幕上的蛇,其速度遠比從螢幕中看出花朵要快上很多;如果那條蛇作勢要攻擊的話,孩童的反應還會更快。

即便是生活在城市中,看見蛇的機會不多的三歲孩童,也能迅速辨識出圖片中的蛇。而這個速度遠遠快於辨識出一朵花。 圖/Foto-Rabe @Pixabay

這種源自演化的避險反應淺顯易懂,此為一種對「掠奪」的原始恐懼。其他常見的恐懼反應──例如恐懼傳染病、害怕個人受到侵犯──大概也有同樣淺顯易懂的演化起源。2004 年,加拿大貴爾輔大學(University of Guelph)的戴維斯(Hank Davis)和賈佛(Andrea Javor)請參與研究者根據三種恐懼(掠奪、傳染病、個人受到侵犯)來給四十部恐怖電影打分數,結果發現,票房成績與分數有強烈的正相關。換句話說,票房成績最亮眼的電影,確實最訴諸人們最原始的恐懼,也就是戴維斯所說的:「(這些恐懼來自於)人們演化過的認知機制。」

二手的恐懼體驗,滿足了本我的誘惑

上述論述或許可以解釋恐怖電影為什麼這麼嚇人,但無法說明人們為什麼喜歡這種不舒服的體驗。這時就要請現代心理學之父佛洛伊德出場了。他曾發表一篇影響深遠的文章〈論詭異〉(The Uncanny, 1919),自此掀起了心理學界從精神動力的角度來解釋各種現象的深厚傳統──也就是採用心理學的精神動力理論。這個精神分析法從佛洛伊德的傳統學說來看,恐怖電影可提供一種二手(但安全)體驗的驚悚來探究本我,並喚起深埋已久的情緒,以及被長期禁止的欲望。而從榮格的學說來看,恐怖故事的吸引力在於可以和原型接觸交流──所謂原型,指的是最原始的「文化模板(cultural template)」,深深烙印在眾人的集體潛意識裡,可觸發內心深處的情感共鳴。

然而,心理學界把佛洛伊德和榮格的理論視為哲學,而不是可驗證的科學假設。近代對恐怖電影吸引力的解釋還包括齊爾曼(Dolf Zillmann)在 1970 年代提出的興奮轉移理論。他指出,恐怖電影結束時,當緊繃的張力平息下來、好人獲勝,這時觀眾會感覺良好,這是古希臘「宣洩」(catharsis)概念的現代版。然而這套理論最明顯的瑕疵是:很多恐怖電影並沒有快樂結局。

另有一套理論認為,恐怖電影有一種類似於做夢的功能,是一種虛擬實境演練,以利於應付真實人生的危急情況。在虛構的世界裡預先體驗恐懼,可讓我們先做好準備,以因應真實世界裡的危機。

約會不看恐怖電影,真的不酷

約會必看恐怖電影,是有心理學根據的! 圖/rolandoemail @Pixabay

1986 年,齊爾曼、門道夫(Norbert Mundorf)等人發表了一篇研究,指出男大學生在看恐怖電影時,如果女伴表現出憂慮、受苦,男大生會看得更過癮;而女大學生的男伴如果保持冷靜鎮定、堅忍,女大生會看得更高興。1960 年代一項經典研究也證明,男性如果在不穩的吊橋,或其他容易引起恐懼的情況下遇到年輕女子,這時男性所散發出的吸引力,會勝過在平穩的地面上與女子相遇時的狀況。這意味著,一旦高漲的情緒被激起(意即腎上腺激增的生理情況)並轉移到其他感受或性吸引力上時,就會出現這種「錯誤歸因效應」。

此外,夫妻或情侶檔去看恐怖電影,或許也會有類似的狀況,也就是所謂的「依偎效應」。甚至,若在一個安全、可掌控的環境裡觀看虛構電影,當恐怖片激起了高張反應,就可能會讓人產生「後設情緒」,意即觀眾能夠清楚察覺到自己的害怕及恐懼,並以此為樂(因為不會真的有危險)。

注解:

  • [1]:prepared learning,指演化上的適應能力,生物為了求生存,某些能力的學習會比較快,例如對蛇的恐懼、懼高等就是為了生存而容易學到的能力。

 

本文摘自《為什麼有點變態,反而很可以?》,2018 年 3 月,遠流出版。

The post 為什麼電影越可怕,越多人喜歡?──《為什麼有點變態,反而很可以?》 appeared first on PanSci 泛科學.

「電業自由化」是什麼?有多自由?它真的是能源產業的萬靈丹嗎?

$
0
0
  • 文/ 高銘志│國立清華大學科技法律研究所 副教授

台灣最近這幾年,能源議題的討論非常熱烈。除了非核家園、大力推動再生能源發展、能源轉型等議題外,2016 年中到 2017 年比較熱烈討論的議題,就是「電業自由化」(electricity liberalization)。這一個議題涉及的是台灣 2016 年 7 月啟動;號稱五十年來最大改變的電業法法制修改工程。

「電業自由化」(electricity liberalization) 涉及的是台灣 2016 年 7 月啟動,號稱五十年來最大改變的電業法法制修改工程。
圖/pixabay

跟一例一修、前瞻基礎建設特別條例等法案一樣,這個工程浩大的修法在執政黨的強勢主導下,於 2017 年 1 月 11 日三讀通過。當時有媒體下了一個非常重量級的標語:50年最大修正,《電業法》三讀通過打破台電壟斷開放用戶購電選擇。可見社會各界對法案通過的期待程度甚高。

不過這次修法,真的有這麼重要嗎?先在這裡給一個簡單的評論:「雷聲大,雨點小」!為此,我寫了幾篇文章來說明觀點。而在這一篇將先讓大家瞭解,國外所談論的「電業自由化」到底是什麼;而之後我們再來談談,為何這次很台的修法有很多能改進的空間。

什麼是電業自由化?為什麼很多國家都在推電業自由化?

電業自由化

顧名思義,就是讓一個產業從高度管制且相對欠缺競爭的狀態,導入市場競爭機制,讓該產業可以透過競爭,能夠達到提升服務品質或者降低價格之目標。

自由化

就是導入市場機制,讓一個產業從高度管制且相對欠缺競爭的狀態,因為有了競爭對手而提升服務品質或者降低價格等產業改善。

推動電業自由化的主要原因,無非與管制市場欠缺競爭,從而導致服務品質甚差,或者價格居高不下的弊端有關。例如英國自由化之前的電力市場,由於電力公司有保證獲利的保護傘,讓公司經營績效其差,更有過度投資、冗員充斥等問題,導致電價居高不下,民怨四起。因此柴契爾夫人執政時,開始有了電力公司民營化與自由化之呼聲。

推動電業自由化的主要原因,無非與管制市場欠缺競爭,從而導致服務品質甚差,或者價格居高不下的弊端有關。
圖/pixabay

英國的這一波自由化風潮,也帶動了歐洲共同體 1996 年開始一系列電業自由化的倡議。2003 年及 2009 年的第二與第三波的自由化風潮與歐盟的擴張,更讓歐洲電業自由化聲勢如日中天。與此同時,美國也在 1970 年代的能源危機後,將電業自由化概念導入公用事業管制政策法,而聯邦層級及州層級也相繼跟進立法推動電業自由化。直到 2001 年加州因自由化而導致的知名的加州電力危機後,電業自由化在美國的發展才趨緩。

從電業自由化的歷程來看,第一波的電業自由化風潮,其實跟通訊、銀行、公路等過去認為應該獨佔經營的產業,卻因經濟典範轉移而朝向「開放並引入市場競爭」發展的產業(如通訊、銀行、公路等)有關。我們過去以為這種公用事業具有自然獨佔的特性,從而認為應該透過不開放競爭的方式,確保其服務品質與供應穩定。然而這一個模式運行數十年後,弊端開始大量浮現。其中,毫無競爭壓力所致的服務怠慢恣意拉抬電價尤其引人詬病。出發點良好卻適得其反,成為自由化發跡的遠因。

不過台灣長年以來維持低電價,台電服務品質也可圈可點,並不符合世界各國推動電業自由化之前提,為何仍有如此呼聲?分曉答案之前,我們先來澄清一些大眾對自由化的誤解。

自由化就得民營化?市場機制就是什麼都要比賽?── 那些關於電業自由化的誤解

望文生義是人們常有的毛病,自由化也是這個毛病的受害者之一。

第一種錯誤,就是將自由化與「民營化」混為一談。

的確有很多國家(如英國)在推動電業自由化的過程當中,也將國營電力公司民營化以提升營運績效。但其實自由化並不一定得連帶民營化,甚至有很多國家,在電業自由化的過程當中,反而會將涉及國家重要利益或者仍舊具有獨佔特性的部門(如:擔任基礎設施之輸配電部門)留在國營體系中,甚至進行國營化。

另外一個誤解是很多人認為一旦電業自由化,所有經營部門都必須導入競爭機制。

不僅一般民眾,連處理電業自由化議題多年的專家也常有這樣的誤解。很多人在公開的場合聲稱,電業自由化就是電力的發輸配售四個部門都要實施自由化。但實際上,大多數國家推動的電業自由化是針對電力部門(發電與售電),希望利用競爭,來降低發電與售電的成本,並提升經營績效。反之,高資本、高門檻的部門(輸電與配電)仍具備自然獨佔之特性,且興建兩條以上線路可能會有環境疑慮等問題,故在自由化後,通常會維持獨佔。

電信自由化的前車之鑑

電信自由化電業自由化只一字之差,發展有同也有異。

隨著科技發展,無線與行動通訊的技術越來越普及,門檻越來越低,到電信自由化後期,經營基地台已成為所有業者都力所能及的一環,競爭者眾,自由化的程度自然較高。可惜電業自由化沒有這樣的技術突破,必須仰賴很像電話線的線路來做傳輸,特別是輸配電服務。

不過電信事業的某些業務(家用電話)經營,則與電業非常類似。大家都知道,家用電話或者家裡用的 ADSL 網路等,通常是採取線路的型態,且這些線路,過去中華電信就已經蓋好,普及到家家戶戶,故此時,若有一個競爭者(如,台灣固網),想要幫你家裝電話或 ADSL 時,便必須租用中華電信的線路,帳單上的「電路費」就是這麼來的。這時問題出現了:為什麼業者這麼多,卻還要採取這樣模式?業者不能直接從自己的機房直接拉一條電話線到客戶家嗎?原因很簡單,就是麻煩!你若是業者,會為了個別家庭如此大費周章嗎?而這種模式,就比較像電業自由化過程,發電設備所生產的電力,必須透過線路(輸配電)送到用戶端。

家裡用的 ADSL 網路等,通常是採取線路的型態,但若想要裝 ADSL 時,便必須租用中華電信的線路,這是因為業者並不會為了個別家庭大費周章。
圖/pixabay

外國月亮一定比較圓?我們該如何自處?

電業自由化的全貌並非一時半刻便能消化完畢,希望透過以上較淺顯的解說,能澄清一些國內媒體傳達的錯誤訊息,協助民眾了解電業自由化的本質。

總而言之,外國之所以啟動電業自由化的真正原因,大概不脫下列兩項:

  1. 電力公司政商關係良好,電力公司高興調價就調價,民眾怨聲載道。
  2. 服務品質不佳。如經常無預警停電,反應報修後又遲遲不復電。

實施電業自由化的政府多半是為了回應民意,才透過這種方法解決電力公司的弊病,那麼電價低廉、服務品質很好的台灣,是否有需要自由化呢?這個有趣的問題,我們在下一篇探討。

電價低廉、服務品質很好的台灣,是否有需要自由化呢?
圖/pixabay

  • (文字編輯/翁郁涵)

The post 「電業自由化」是什麼?有多自由?它真的是能源產業的萬靈丹嗎? appeared first on PanSci 泛科學.

人生短短幾個秋,兒童如何理解「死亡」這個人生課題?

$
0
0

死亡一事在許多文化中經常成為禁忌,就跟性教育一樣。華人更是在孔老夫子「未知生,焉知死」的名訓之下,讓談論死亡成為忌諱。

因為種種顧慮,死亡經常成為恫嚇的語詞,也常常與鬼怪、懲罰、地獄等負面概念連結在一起。許多家長認為不要教、不用認識,小孩自然就可活在溫室之中,處於無菌的狀態之下。但小孩無可避免會面對死亡的衝擊,我們再怎麼逃避,還是有機會遇到小孩熟識的人離開人世。

人生短短幾個秋啊,不醉不罷休──與其躲躲躲藏藏,不如好好面對一番。

本文站在發展心理學的角度,討論不同階段的嬰兒、兒童、青少年如何理解死亡這個議題。

圖/pixabay

死亡四元素:普遍性、不可逆、無功能、因果性

從過去的科學文獻中可知,較多學者是採用 Nagy (1948) 所提出的死亡概念,其元素包含普遍性不可逆無功能因果性(見下表)。

普遍性是指所有的生物不可避免終將死亡,毫無例外;不可逆是指當一個生命死亡之後,就不可能再復活;因果性是指造成死亡不可能毫無來由,事出必有因,如生病、年老、發生意外。不過後續相關研究認為 Nagy 的研究有研究方法上的缺失,如採用引導方式誘導小孩的回答。此一結果可能無法推論到不同文化的兒童 (Cuddy-Casey, M. & Orvaschel, H. ,1997)

而後有學者認為應加入精神上、靈性上的概念:「無形的延續」,代表有形的肉體已經死亡,才能考慮身後之事。但若採用較為簡略的概念理解死亡,四個元素的說法確實不失為一種快速簡單的理解方式。

不同階段的兒童,面對死亡有不同的瞭解

若站在兒童發展的角度,就必須配合小孩生長而考量不同的發展階段。發展心理學上最為人所知名的,當屬 Piaget 的認知發展理論。在解釋死亡這件事情時,也可採用相似的發展概念來看待。以認知發展理論出發,就可詳細解釋不同年齡層,會隨著年紀的成熟,對於死亡的概念有不同的瞭解。

以下分成四個階段說明:

  1. 感覺動作期(出生至 2-3 歲):此階段的孩子,只會用感官與各種動作來理解世界。幼童在這個階段對於死亡並無具體概念,他們以為看不見的東西就是消失了,也無法詳細分辨分離與死亡之不同。
  2. 前運思期(2-3 歲至 5-7 歲):這一階段的孩子,對於死亡的概念並未建立,也不一致。對於死亡尚無普遍性看法,會認為這件事只會發生在別人身上,自己、家人、親戚朋友卻可以倖免。
    他們的因果關係也建立的不恰當,推論也有侷限。如果他們遭遇死亡相關事件,他們可能建立自己的防禦方式,表現出沒事的樣子、不悲傷、照樣遊玩、一切如常。他們只能從自己真的有看過、聽過、感覺過的部分去想像,無法思考自己未曾體驗過的事情。他們可能會簡單的認為死亡只是離開了或者去睡覺了,因此有一些孩子會害怕睡覺時間或與父母分離。所以,非常重要的是,家長或照顧者在討論此事時,千萬不要告知小孩去睡覺或去旅行等同於死亡。我知道很多人喜歡用出遠門了來形容人過世,但其實這並不是很好的說明,出遠門代表有一天會回家,但若是哪一天知道這樣就是永遠都不會再回來的意思,留在世上的人會有很深的被遺棄的感覺。這樣的說法只會讓小孩的認知發生扭曲,並沒有任何好處。總之,面對這個階段的孩子,最好的辦法是用簡單的語言,以現實為基礎的解釋才是適當的。
  3. 具體運思期(5-7 歲至 10-11 歲):在這個階段的孩子,對於死亡的概念慢慢變得成熟。可以理解死亡就是死亡了,但是仍覺得自己可以倖免。如果其他人聰明一點或是運氣好的話,也可逃過一劫。小孩可能出現一些不成熟的想法,如生病與死亡是一種懲罰。到十一歲左右,才能完整的理解死亡就是身體機能全部消失。死亡是嚴重疾病或受傷所致,而非做了什麼單一的錯誤行為。
  4. 形式運思期(10-11 歲至青少年期):在這階段的孩子,抽象能力逐漸進步,對於死亡的概念已經與成人相當,其複雜程度也與成人接近。也逐漸可以接受所有的生命終將死亡,無人可跳脫。也可瞭解死亡不是魔術,不是突然冒出來的(不是喝蜂蜜檸檬就可以豁免),可以理解成因為何、從何而來。

讓孩子們去體會人生的必經之路吧!

家長們有了上述的概念做為基底,萬一需要派上用場時就不會畏畏縮縮、吞吞吐吐。如果小孩的重要親人過世,個人覺得不需要隱瞞,就是讓他們參與整個籌備喪禮的過程,各種儀式的進行也會協助理解這件事。他們在這個歷程中,應該就會知道這個重要的親人不會再回來了。

當然,如果是小小孩(7 歲以下)可能還是不太理解,因為認知發展還沒成熟的關係,他們可能還是懵懵懂懂、一知半解。如果要與他們討論死亡相關的概念,可以考慮用繪本的方式,如《爺爺的天堂筆記本》(這本是很容易入門書,用較為幽默的方式去看待死亡)。觀看的重點不是唸過去就好,而是放在跟他們討論各種可能性,假如故事情節發生在自己身上的話,自己可能會怎麼做。對於他們所提出各種天馬行空的看法,以尊重、同理他們的態度,面對各式各樣不成熟的想法。

至於在哀悼期間,就是多陪伴他們,主要照顧者可能需要多擔待。大人自己也要小心不要耗竭,如果可能的話多一點人輪流陪著小孩,讓主要照顧者偶爾也可以喘息一下。若能如此,大部分的孩子應可以順利度過死亡的幽谷,慢慢恢復正常生活,逐步往前走,進而體驗真實人生的脈動。

在哀悼期間多陪伴小孩,大部分的孩子應可以順利度過死亡的幽谷,慢慢恢復正常生活。
圖/pixabay

參考資料:

  • Poltorak, D.Y. & Glazer, J.P. (2006). The development of children’s understanding of death: cognitive and psychodynamic considerations. Child Adolesc Psychiatric Clin N Am, 15(3):567-73. DOI:10.1016/j.chc.2006.03.003
  • Cuddy-Casey, M. & Orvaschel, H. (1997). Children’s understanding of death in relation to child suicidality and homicidality. Clinical Psychology Review, 17(1):33-45. https://doi.org/10.1016/S0272-7358(96)00044-X

The post 人生短短幾個秋,兒童如何理解「死亡」這個人生課題? appeared first on PanSci 泛科學.

手機又沒電了!鋰電池的續航力要怎樣才可以加倍呢?

$
0
0
  • 作者/李赫
  • 文字編輯/翁郁涵

新世代電池的首要功課:高續航力與高安全性

現代人離不開電,除了人人家中都有的電器外,和一般人最貼近的電,就是手機電池了吧!在這個手機沒電就可能變失蹤人口的時代,手機的續航力愈顯得重要。

什麼是續航力?簡單說就是電池的蓄電量。人人都希望手機續航力越來越強,最好充一次電便可用一週,但是,電池不能變大變重。這……可能嗎?還是強「電池」所難?

可能,只要我們能提升電池的能量密度。

只要我們能提升電池的能量密度,我們就能增加手機的續航力。
圖/pixabay

能量密度分兩種:體積能量密度 (Wh/L) 和重量能量密度 (Wh/kg)。 前者是單位體積所具有的能量,後者是單位重量所具有的能量。不論哪一種能量密度,只要密度提高,都能夠提升電池的能量。

先來認識鋰電池吧!

鋰電池的基本結構。
圖/Springer Link

手機所用的鋰電池的結構與一般電池相同,包含正極、負極以及電解液 (如上圖)。正極是由三維的晶體結構所組成,負極則是由平面的層狀結構所組成,兩者都具備儲存鋰離子的化學環境。電解液負責攜帶鋰離子在兩極間移動來導通內電路,讓鋰離子在正負極間嵌入/釋出來充放電。

鋰電池的材料組成則是:
1.正極:金屬氧化物( LiCoO2, LiNiO2, LiMn2O4, LiFePO4, LiNixCoyMnzO2 )。
2.負極:石墨。
3.電解液:環狀/鏈狀酯類之混和物 (鏈狀碳酸酯類、環狀碳酸酯類)以及鋰鹽類。

自 1990 年 Sony 所開發之鋰電池問世以來,鋰電池製程不斷精進,能量密度從剛開始的 190 Wh/L 上升到今日的 650 Wh/L,幾乎成長了三倍,不過現在卻遇到了電池技術發展瓶頸,遲遲無法繼續提升密度。

然而,即便現在能提升量密度,跟著提高的危險性也不容忽視,尤其鋰電池一直擺脫不了燃燒爆炸的疑慮,像是兩年前的三星手機自然風波,到現在仍讓人記憶深刻。而且不只手機,鋰電池也曾讓走在科技尖端的  Tesla 電動車起火燒毀,因此電池續航力提升的同時,也要確定電池安全無虞,否則光想著伴隨數倍能量而來的數倍爆炸威力,就讓人退避三舍。想做出新世代電池,必須同時改造電池的正極、負極、電解質材料才行。

提高續航力要先解決:鋰電池爆炸

高能量鋰電池由於內部儲存的能量更多,短路瞬間可釋放出之能量也愈多,更像一顆炸彈,所以爆炸的風險一定有。隨著能量加倍,爆炸風險當然升高。攜帶著高能量電池出門就好像攜帶著一顆炸彈一樣。雖然鋰電池本身具有潛在的危險性,但只要我們了解爆炸 (專有名詞為熱失控 Thermal runaway) 的原因就能夠管控風險,將熱失控的可能性降到最低甚至不會發生。

熱失控 (thermal runaway) 所指的情況是,當溫度增高時引發的變化使溫度更進一步的增高,產生惡性循環,因而導致某一種破壞性的結果。
圖/wikipedia

電池內部有複雜的化學反應,熱失控就是電芯短路而造成的連鎖反應。鋰電池在過充、過放的時候,可能因為隔絕正極與負極之隔膜被擊穿,開始內部微短路,接著造成局部加熱、溫度升高,然後受熱的電解液分解產生有機可燃性氣體;受熱的正極釋放出氧氣(正極是金屬氧化物,晶體結構改變導致部分氧原子以氧氣的狀態釋放出),結果電池內便具備了燃燒的三要素:熱源、燃料、氧氣。只要溫度持續急遽上升,就會到達失控邊緣而快速燃燒,進而爆炸。而且爆炸的瞬間溫度可達到攝氏 700℃ 左右。

熱失控的主要成因,為電池內部電解液的化學組成本來就含有機可燃性。

若要改善安全性,則必須替現行的電解液找到取代方案。

從前述的熱失控發生過程我們可以知道,熱失控的關鍵原因就是電解液分解後的有機可燃性,所以想一面提高蓄電量一面降低燃燒風險,就必須減少;甚至去除內部的可燃物質──電解液的碳酸酯類(鏈狀/環狀碳酸酯類)。

一石二鳥的未來計畫

電解液要幫助離子在正負極間快速移動,因此會使用一般認知中傳導速率最快的液體電解質製作,我們要找到能夠替換、不會燃燒的材料來取代電解液,不會燃燒的固體的無機物如果又能夠傳導離子將是最好的選擇。

相關研究顯示,確實存在具有高離子傳導速率的固體電解質,而這類電解質的傳導速率甚至不會輸給液體,這類的晶體稱為高速離子導體 (Fast ion conductor),其內部存在著特定管道讓離子能夠在內部快速移動而達成離子導通。

鋰離子在具有可以高速移動管道的晶體內傳遞,讓離子傳導速率超過電解液(此以LLZO 離子傳導晶體圖示作說明)
圖/Phys.org

如果能替換電解液的材料,同時將電池的正極以及負極的材料替換成具有更高電量的材料,整個電池在設計上厚度就能夠降低。相對而言在更小的體積內儲存了更多的能量。由計算結果,顯示這樣的設計之下電池的電容量可以由目前的 650 Wh/L 上升到 > 1200 Wh/L,電容量幾乎是目前的兩倍,電池的續航力比目前更多了一倍。

已經看得到電池續航力的未來

綜上所述,如果將電池的正極以及負極的材料替換成具有更高電量的材料,電池電容量便可以由目前的 650 Wh/L 上升到 > 1200 Wh/L。能量密度提升,電池也就能更加輕薄,而且續航力與現有同體積電池相比,可多上一倍之多。再加上將電解液替換為固態電解質,這種電池就能效能高安全性也高。

固態鋰電池以高速離子傳導晶體作為固體電解質,取代傳統電解液,可以提升電池續航力及安全性。 圖/US Department of Energy

這樣一石二鳥的超棒電池構想吸引了全球研究單位以及廠商爭相投入研究開發,甚至已經有實驗型電池進入測試階段。但製造程序尚有很多問題要克服:電池內部固體電極與固體電解質因為都是固體, 在微觀上並未有效接觸會使離子沒辦法順利傳遞或是可以傳遞的暢通路徑變少,產生離子傳遞路徑不暢通而造成電池整體電阻上升的問題。另外大量生產的製造方式與現行的電池的製造方式不同,成本以及良率,也必須詳加度量。不過我們不用灰心,路已找到,只要堅持往前走,科學必定會持續進步。

參考資料:

The post 手機又沒電了!鋰電池的續航力要怎樣才可以加倍呢? appeared first on PanSci 泛科學.

【Gene 思書齋】科學與藝術,迸出新火花

$
0
0

宛如「神經科學」之神 ── 卡哈爾

聖地亞哥.拉蒙.卡哈爾 (Santiago Ramón y Cajal,1852-1934)。
圖/wikipedia

聖地亞哥.拉蒙.卡哈爾 (Santiago Ramón y Cajal,1852-1934) 對研究神經科學的人來說,或許就像是個神一般的存在。

科學研究當然不應該個人崇拜,可是當修神經科學課時,教科書和老師常常提到他,還不時說「又被卡哈爾猜中了!」,心中當然對他的崇敬,真的會有多江水滔滔不絕。

早在大學求學時,很多有心要做科學研究的莘莘學子,可能都讀過他的一本書《研究科學的第一步-給年輕探索的建議》(Advice for a Young Investigator)。這本書當時對台灣學子和年輕科學家來說,非常受用,因為卡哈爾當時身處的西班牙,在西歐中算是較落後的國家,尤其是科學研究上,不僅風氣不盛,經費也相當匱乏。卡哈爾就是在一個不算良好的環境,奮鬥成為 1906 年諾貝爾獎得主。

很多有心要做科學研究的莘莘學子,可能都讀過卡哈爾的其中一本著作《研究科學的第一步-給年輕探索的建議》(Advice for a Young Investigator)。
圖/AMAZON

卡哈爾發展出更好的神經染色法,他孳孳不倦地觀察了各種腦組織的樣本。

他的觀察力和洞見力超群,他自己就說道:
「從顯微鏡底下觀看大腦,就像帶著一本寫生簿,走進一片有數以億棵樹的森林中。我的工作就是每天看著這些彼此盤根錯節的樹群模糊影像,並試著為這片森林,寫一本附有插畫的田野調查指南。」

他提出的許多重要神經科學理論,都是出自他對神經系統微觀結構的長期觀察。他手繪的神經圖,為我們在攝影技術還不發達的年代留下寶貴的科學記錄,迄今仍在最新的科學期刊論文和教科書中看到,因為他對手繪下的各種神經元及組織的功能,都提出的科學理論,神經科學證明他常常是對的。他最重要的貢獻之一,是發現大腦細胞是由個別獨立的「神經元」構成,發展出影響後世腦神經研究的「單一神經元學說」。

卡哈爾的手繪圖將科學與藝術完美結合

當初我也曾想往神經科學的領域發展,第一次申請國外的研究所時,也都是神經科學的博士班,還好塞翁失馬,現在回母校任教,多位神經科學方面有極為傑出表現的同事組成堅挺的團隊,非常羡慕也慶幸不夠聰明和努力的自己只要能在旁欣賞和鼓掌就好。

卡哈爾的大量手繪圖,在科學繪畫上也是不可多得的優異作品,是科學與藝術的完美結合之一。這些精美的畫作,不能只有科學家或科學史家看到而已。所以這本《大腦之美:神經科學之父卡哈爾,80 幅影響大腦科學&現代藝術的經典手繪稿》(The Beautiful Brain: The Drawings of Santiago Ramón y Cajal) 的出版非常令人振奮。

《大腦之美:神經科學之父卡哈爾,80 幅影響大腦科學&現代藝術的經典手繪稿》(The Beautiful Brain: The Drawings of Santiago Ramón y Cajal) 的出版非常令人振奮。
圖/Giphy

卡哈爾的畫作,即能成為科學又能成為藝術,同時在於他並不是像照相機一樣去描繪看似雜亂無章的神經組織,也就是說在科學上及藝術上,他的畫作是精妙的加工,而非模仿。他明察秋毫地洞察了神經元的形態以及和之間的關係,並且表現在他上千幅畫作中,這和藝術家捕捉光線和人物神情、動作等有異曲同工之妙,這具體表現在畫作中的墨色濃淡、線條粗細或大小比例上。

大腦之美》收錄卡哈爾 82 幅珍貴的經典手繪稿,有頂尖的神經科學家為我們作解釋。書中也附有文章述說卡哈爾的生平和成就,書末附有用現今科技能達到的水準。即使在科技日新月異的時代裡,卡哈爾留下的手稿還能夠指引神經科學家做出一個又一個令人驚嘆的新發現!

本文原刊登於 The Sky of Gene

The post 【Gene 思書齋】科學與藝術,迸出新火花 appeared first on PanSci 泛科學.

Viewing all 1714 articles
Browse latest View live