Quantcast
Channel: 科學傳播 – PanSci 泛科學
Viewing all 1714 articles
Browse latest View live

從大數據中看出端倪,瑪莉發現中洋裂谷──《聽見海底的形狀》

$
0
0

編按:本文選自《聽見海底的形狀》第十章,講述地質學家瑪莉‧薩普與研究夥伴布魯斯繪製海底地形圖,進而發現中洋裂谷的故事。

研究船來來回回,先拼湊完整大西洋航線

一九五二年九月,瑪莉的辦公室有一落紙箱,紙箱裡是一卷又一卷由博士和他的學生利用亞特蘭提斯號研究船,從一九四七年夏天蒐集至一九五二年九月的聲納紀錄。她另外還有一份記載研究船航線的詳細資料。這五年間,亞特蘭提斯號多次往返美國東岸與歐非兩洲西岸,航線有長有短。每一次的航程路徑──也就是航道(好比動物留下的獸徑足跡)──皆清楚標示在航海圖上。該紀錄亦定期標示經緯度,好讓測得的深度可與測定位置互相吻合。

由於研究船鮮少一出海即一口氣橫越大西洋,因此大部分的航線都經過縝密的編纂規畫。舉例來說,研究船可能從瑪莎葡萄園(麻州島嶼名)沿岸出發,橫越大西洋四分之一的幅度(期間每隔一段距離便使用各種工具進行各式實驗,包括採岩芯、撈取沉積物樣本、測量水溫與鹽度,也許再追加上折射震測),然後返回美國;而另一段航程可能只蒐集「四分之一幅度至大西洋中線」這一段的紀錄。搞不好還有誰搶在所有人之前,一路直奔直布羅陀並蒐集聲納紀錄。因此,瑪莉若想取得從瑪莎葡萄園直達直布羅陀的航道圖,她得像剪輯三十五釐米底片一樣,利用前述三份資料設法拼湊出來。剪接中的航道區段猶如一張張電影分鏡。

她得像剪輯三十五釐米底片一樣,利用前述三份資料設法拼湊出來。剪接中的航道區段猶如一張張電影分鏡。圖/pixabay

著手剪接時,瑪莉眼前總共有六份航道圖:最北的一條始於瑪莎葡萄園,終於直布羅陀;最南的一段介於巴西勒西非(Recife)與獅子山共和國自由城(Sierra Leone, Freetown)之間。這些畫在紙上的航道圖如一條條曬衣繩,恣意隨興地垂掛大西洋兩岸;沒有一條完全水平,大多朝海洋中線下垂。把這六條航線加總統計,可見亞特蘭提斯號已航行超過十萬哩,總共產出三千呎長的聲納紀錄紙,也就是堆在瑪莉辦公室角落那疊紙箱裡的紙卷大軍。

點點相連視覺化,繪製海底地形剖面圖

瑪莉後來回憶,她和布魯斯的期望是呈現北大西洋的「完整模樣」,因此他們的下一步是將那三千呎長的聲納紀錄轉譯成圖像──這可是驚世創舉。為了執行這項任務,瑪莉將幾張布紋紙黏接成條,再畫上六幅橫圖;頂端是最北的航道圖,尾端是最南的航道圖,其他四條則依序畫在兩者之間。每一幅圖皆以縱軸標示深度(刻度為一千、兩千、三千及四千噚),橫軸則以五百哩為單位,標示距離。每張圖皆像極了樂譜:五條橫線,線與線之間有固定間隔,標示距離的直線則就像是小節線。

每張圖皆像極了樂譜。圖/pxhere

接下來,瑪莉在圖上標出每一座高峰與低谷的深度,以垂直水平比「四十比一」的幅度放大海底地形的垂直比例。縱軸的一吋相當於一海里(一八五二公尺),橫軸一吋代表四十哩(六四三七三公尺)。瑪莉和布魯斯刻意選擇誇大垂直比例,如此才能看見極可能在無意間忽視的海底細微變化:放大比例後,山脊變得更高(像太妃軟糖一樣朝海平面被延展拉高);而山谷則顯示往海底深鑿的凹溝。他倆之所以選擇四十比一的比例,理由是最長那段航道需要八七.五吋(近七.五呎)的橫幅寬度。

「當年,我們在製圖這方面還有點天真。」瑪莉說,「所以我們弄了一幅需要好幾張製圖桌才容得下的超大原稿。」要說天真,是因為他們認真做出一份不符雜誌或報紙規格且難以複製翻印的原圖,但亦不失為聰明之舉:正因為原圖超大,他們才能看出那些在「可印刷的尺寸」(瑪莉稱為「正常、可對折的圖紙」)之下,極可能消失不見的細微變化。

海底地形剖面。圖/wikimedia

在紙上標出一個個註記深度、宛如五線譜音符的黑點後,她將點與點連接起來──這部分就需要仔細斟酌詮釋方法了。在深度方面,她標記的刻度為每一吋畫一點,但點與點之間呢?如此豈不像少了好些音符的樂譜?音樂家可運用在和絃行進、和聲或旋律方面的知識,於視譜過程中創出新曲,順利完成演奏;瑪莉的做法也差不多,只不過她並非即興創作,而是在尚無數據之處插入假設數值,再與已知深度的各標定點相連。這可不是隨意亂連,而是基於地質學家的紮實訓練,步步為營。然而,不是每個人都能像瑪莉一樣,嫻熟演繹不同深度間的連結;就像在鋼琴前坐下來嘗試即興演奏的大有人在,但多數送出的僅是噪音,而非音樂。

瑪莉在高高低低的鋸齒線下方點上墨點,成果顯示這六份航道圖呈現的海底剖面實在複雜。六幅海底地形剪影,以墨點標註在看似樂譜的圖表上:大陸棚陡降進入大陸坡,大陸隆堆再緩降進入布魯斯尋尋覓覓的深海平原。百慕達群島浮出海平面。十九世紀晚近,眾海洋學家推敲臆測的寬闊中洋脊也出現了。此外,非深海平原之處亦布滿許多細小如石筍的山脈地貌。這是一項了不起的成就:瑪莉的作品是有史以來最精密詳細的海底地形剖面圖。但她並不滿意,她認為她完全沒發現任何新玩意兒。

大西洋中央橫亙了一長條中洋脊。圖/wikipedia

慧眼看出 V 型槽口,難道大陸漂移是真的?

說到底,以前也有人製作過這個區域的部分海底剖面圖,其中絕大多數都是一九二五至二七年之間,由德國研究船「流星號」的幾位海洋學家遠征南大西洋時完成的。這些圖在一九三○年代即已公開發表,而全球科學家也早已見過。事實上,布魯斯之所以在把聲納紀錄交給瑪莉時順帶提起深海平原與大陸隆堆,是因為他已經大致看過這些地貌了。但瑪莉反駁他的缺乏想像力。「我覺得這些地貌原本就相當明顯,哪需要這般胡搞瞎搞?」她寫道,「我想找的是更複雜,或者更細微、不易察覺的差異。」以布魯斯的立場來說,她繼續寫道,他想描繪勾勒的是「不曾出現在任何文獻上、值得明確標示出來」的地理特徵;然而,看在她眼裡,這個想法「絲毫不具智能上的挑戰」。她期望能發現更多東西。

瑪莉日復一日窩在二樓女兒房,持續研究剖面圖。圖/pixabay

這項工作初期就耗去她約莫六周時間。夏去秋來,瑪莉日復一日窩在二樓女兒房,持續研究剖面圖。有時,她和共用辦公室的夥伴會在壁爐生火。她常盯著能眺望哈德遜河景的大窗子,凝視良久。她會花好長一段時間細瞧已確認存在的中洋脊,即海床上抬的寬闊隆起。中洋脊在六幅航道剖面圖上皆清晰可見。也就是說,這道隆起不是單一一座山,而是一條山脈。這時發生了一件事:「當我更仔細研究,試圖解讀與拆解其構造細節時,」她說,「我注意到,在每一幅剖面圖中,中洋脊峰頂附近都有一道頗深的 V 型槽口。」深溝、裂谷。這絕對是新發現。她繼續研究,重複確認聲納紀錄,確定她並未標錯深度。最後她確信她的判斷正確,立刻致電布魯斯。

中洋脊頂峰具有凹陷之 V 型槽口。圖/wikipedia

其結果是兩人首度爆發嚴重爭執。雙手來回比畫,執拗與不願妥協的反覆聲明四射:布魯斯輕蔑大笑,咆哮駁斥瑪莉的女人直覺;瑪莉臉繃得跟拳頭一樣緊。白色布紋紙製成的巨大地圖橫亙在兩人之間,布魯斯用手指猛戳某段裂谷。從這個角度看,崎嶇的海底不也像捕獸夾嗎?瑪莉大罵布魯斯冥頑不靈、食古不化,她說,至少她動腦思考,也想了些東西出來;況且他到底在怕什麼?

她非常清楚他在怕什麼。他們倆都曉得,這道裂谷的存在意味著大陸漂移。魏格納的理論在美國普遍遭到駁斥謾罵,卻也因此廣為人知。比方說,瑪莉就是從密西根教授那兒學到的。許多年後,瑪莉在投稿《自然史》(Nature History)的一篇文章中提到:「假如有一種學說叫大陸漂移,那麼就邏輯而言,極可能涉及『中洋裂谷』這類構造。源自地球深處的新物質自裂谷湧出,將中洋脊一分為二、往兩側推離,也因此推動了不同板塊上的大陸。」她開始描述相關效應,但布魯斯不想聽,也肯定不想看見相關證明。他繞著屋子踱步,手支著腰,指控她做白日夢。瑪莉徹底失去耐性。她得使出最大的氣力阻止自己拿釘書機扔他腦袋。她威脅要再度辭職。同辦公室的其他人早已全員疏散。最後,布魯斯手指著裂谷,飆出這一句──女孩子家瞎扯淡。不可能是那種東西。那看起來太像──

大陸漂移,瑪莉說。

大陸漂移,布魯斯說。

兩人沉默對望。除此之外,你還能怎麼解釋這玩意兒?

連續分布於不同大陸的化石,為大陸飄移的證據。圖/wikipedia

顛覆認知的革命性發現

一九五二年,「大陸漂移」是頗具爭議的字眼。「在當時,」瑪莉在《自然史》文中寫道,布魯斯和「拉蒙居以及全美科學家,幾乎都認為大陸漂移根本不可能發生。」提到「大陸漂移」多半會引起從輕微焦慮至洩氣恐懼等不同反應,這點依個人對自我腦力的信心而定。美國學者不僅認為陸塊不可能漂移,甚至覺得「這幾乎是某種形式的科學異端邪說。」瑪莉寫道,「如果暗示某人相信大陸漂移說,幾乎等同於暗批此人腦袋肯定有問題。」布魯斯對這項假設的反應近乎恐懼,但瑪莉不然;若要說瑪莉曾感到不安的話,唯一的證據不過就是她在告訴布魯斯之前,曾經一而再、再而三不斷檢查而已。

為了解瑪莉何以敢斷定海底有裂谷──正如大陸漂移說所暗示──必須先迅速回顧一下她曾受過的訓練。在地質學家養成過程中,瑪莉學會如何一葉知秋,透過觀察一塊岩石或一片特殊地域,利用其結構、組成與位置等細節,推演其歷史來由,此即岩石的地形學背景資料,解釋岩石何以與如何形成。據瑪莉表示,在校期間的她「沉迷」、「嗜讀」地形學教科書;不論是學校指定教科書,或是她自己找到的那一本,她皆貪婪飢渴地從第一頁讀至最後一頁。

在校期間的她「沉迷」、「嗜讀」地形學教科書;不論是學校指定教科書,或是她自己找到的那一本,她皆貪婪飢渴地從第一頁讀至最後一頁。圖/pxhere

她也提到一項地質系學生很難躲掉的習作:「通常,你會拿到一張可能來自世界任一地點的方塊地形圖,然後,你必須根據地形地貌,推測這塊土地的地質史。」這套方法是她從陸地上學來的,現在她將同一套程序應用於海底研究:當她看見海床出現一道裂谷,她自問,這道裂谷為何出現在這裡、為何呈現如此模樣。裂谷即裂縫,而這道裂縫龐大且連續,還跟地震活動扯上關係,於是,她能想到最簡單的答案即是大陸漂移。

東非大裂谷則是陸地上的裂谷。圖/wikipedia

簡單,卻具革命性:在瑪莉做出重大發現之前,流星號的聲納紀錄已流傳近二十載,卻沒有一個人注意到這道裂谷。除了瑪莉與布魯斯,無人見過大圖版的大西洋中洋脊系統,無人調整比例、壓縮雜訊、凸顯原本不起眼的裂谷,也沒有人將這些黑點和同區域的地震活動連結起來,大膽使用「裂谷」一詞描述其發現。

一九三八年,一位名叫均特.迪里屈(Günter Dietrich)的男子曾於《國際水文評論》(International Hydrographic Review)發表過一篇文章,算是截至當時為止最接近瑪莉與布魯斯的成就。雖然他在一些小海域發現相似的地形模式,迪里屈寫道,不過一旦擴大觀測範圍,「彼此之間是否絕對相關就很難說了。」大西洋中洋脊充滿「一團混亂糾結的峰頂和山谷」。他只看見混亂,瑪莉卻找出模式。誠如布魯斯某次談到的:有人問他,流星號發表那些紀錄時,何以未在科學社群留下深刻印象?布魯斯的答覆是:「沒有人找對方向。直到瑪莉出手才正中紅心。」

當然,布魯斯是後來回顧時才這麼說的。早在一九五二年,他更擔心這道裂谷對於他未來人生的影響;當時他腦中想的是「異端邪說」,而非革命創見。瑪莉將那道裂谷呈現在他眼前,他叫她全部重做一遍。她照辦了。

 

 

本文摘自《聽見海底的形狀:奠定大陸漂移說的女科學家》,2017 年 11 月,貓頭鷹出版社出版。

The post 從大數據中看出端倪,瑪莉發現中洋裂谷──《聽見海底的形狀》 appeared first on PanSci 泛科學.


當科技發展跑在世界前面,科學家該做什麼?基因編輯技術 CRISPR 共同發明人——珍妮佛.道納專訪

$
0
0

上個月底,來自中國南方科技大學副教授賀建奎,因宣稱利用 CRISPR/Cas9 基因編輯技術,使得一對雙胞胎寶寶天生免疫愛滋病,掀起巨大倫理與醫學爭議。

什麼是 CRISPR/Cas9 ?

CRISPR/Cas9 基因編輯技術就像是一把多功能的分子剪刀,可以用來修正基因組成,治療遺傳性疾病。如果把生物體的基因想像成一本書,CRISPR/Cas9 技術出現讓編輯基因就像是編輯文章中某個段落的幾個字一樣容易。(延伸閱讀:編輯基因的超級瑞士刀:CRISPR 技術──《基因編輯大革命》操控基因的工具就在手邊:CRISPR基因編輯工具將帶來怎樣的未來?──《基因編輯大革命》

CRISPR/Cas9 基因編輯技術就像是一把多功能的分子剪刀,可以用來修正基因組成,治療遺傳性疾病。
圖/flickr

由於 CRISPR/Cas9 技術門檻比過往的基因編輯技術低了許多,在 2012 年美國生物化學家珍妮佛.道納 (Jennifer A. Doudna) 和法國微生物學家伊曼紐夏彭提耶 (Emmanuelle Charpentier) 共同合作的研究論文發表之後,學術圈捲起一股 CRISPR 研究風潮,相關研究論文在數年內快速飆升。2013 年初這項技術就已經能夠被用在超過十種以上的基因,也促成這次中國基因編輯寶寶誕生爭議。

當 CRISPR/Cas9 技術發展速度快到政府來不及制定相關法規來因應,或甚至根本來不及知道有它存在,此時科學界該如何應對?

泛科學在今年十月初非常榮幸能採訪到 CRISPR/Cas9 基因編輯技術的共同發明人:珍妮佛.道納 (Jennifer A. Doudna),和我們面對面一起討論,在 CRISPR/Cas9 技術發展如此快速之時,身為科學家是如何突破同溫層,引領不同背景的專家一同討論基因編輯的未來?是什麼原因促使道納持續向大眾解釋自己的研究?為因應科技發展迅速的時代,她又給台灣的科學界什麼建議呢?

如何突破同溫層:從公眾演講開始練功

轉譯專有名詞,對科學家是個大挑戰

科學家平常接觸的對象都是相同領域的教授、研究生,也已經習慣以專業術語介紹自己的研究成果。當科學家開始和不同領域的人對話,往往會需要花很多時間思考如何轉化專有名詞,道納說:「我猜想很多科學家想專注在自己的研究上,不太想解釋自己到底在研究甚麼,也不太接觸跟自身研究相關的倫理與社會問題。」

道納坦言自己原先也抱持相同想法,但她發現她有責任必須站出來向大眾解釋自己的研究。

那該如何跨出這一步呢?

換位思考,想像自己是圈外人

道納從 2015 年開始,一邊在柏克萊持續運作自己的實驗室,一邊到世界各地舉行公共演講、寫科普書。她說:「我會去想像,如果我完全不知道這些專業術語,我該怎麼去理解這項新技術?」從這個過程中,道納透過不停地修改解釋方式,及不斷思考有哪些新的比喻可以用,漸漸抓到解釋研究成果的訣竅。「慢慢的我也開始瞭解大眾對什麼感興趣,也越來越擅長跟非生物學家討論我的研究,對我而言這變成一個很有趣的挑戰!」

道納透過不停地修改解釋方式,及不斷思考有哪些新的比喻可以用,於是她漸漸抓到解釋研究成果的訣竅,也開始瞭解大眾對什麼感興趣及越來越擅長跟非生物學家討論她的研究。
圖/pixabay

患者家屬的回饋與感謝,是支持道納做研究的強大力量

對科學家而言,和不同領域的學者說明自己的研究內容無非是個大挑戰,對道納而言也是。既然如此,是什麼原因讓她堅持繼續完成這項艱鉅任務?

道納分享她多年前在瑞士一場討論「未來的人性」的論壇中遇到一位歷史學家,在論壇中分享「我們如何從過去的歷史來了解未來的人性」。會後這位歷史學家把道納拉到一旁,滿懷感激的跟她說:「你做的事情真的很重要,我的姊妹患有遺傳性的自發性突變,造成嚴重的神經失調,她經歷非常非常多的痛苦,連帶著家人也都受影響。」她越說越哽咽。她繼續說:「如果未來真的有可能可以利用基因編輯技術來修正基因,勢必非常多人能因此受惠。」

道納開始她的 CRISPR 研究之後,曾收到世界各地許多來信,說著不同家庭曾因為遺傳性疾病遭受許多痛苦,而這次是道納第一次親自從患者家屬聽到這樣的回饋跟感謝。如此真實的案例就發生在眼前,讓道納既震撼,也大受感動。

道納開始她的 CRISPR 研究之後,在瑞士一場論壇中遇到一位歷史學者是遺傳性自發性突變的患者家屬,這位歷史學者對她的研究表達的回饋跟感謝,讓她既震撼也大受感動。
攝/ TW

當她回到實驗室裡繼續她的研究生活,時不時就會想起這些病患家屬對她的感謝,這些回饋讓她更確信 CRISPR 的研究到底有多重要。「病人在等,沒有時間可以浪費,我們必須趕緊加快研究腳步,讓 CRISPR 技術越趨精準、有效跟安全。」

給科學界的建議:鼓勵投身生科基礎研究、培養知識轉譯能力

走出同溫層泡泡:從學生時期開始練習

從道納分享自己和大眾溝通的經驗,我們知道科學家向各領域的人解釋科學研究,不僅是為了善盡社會責任;同時科學家在溝通的過程中也能獲得更強大的研究能量。道納非常鼓勵台灣的科學家走出實驗室與大眾對話,她特別提到:

「如果科學家想練習向其他專業領域的人介紹自己的研究,或許從學生時期就可以開始練習,比如透過社群媒體試著向身邊的同學、親友解釋自己的研究。」

若能從學生時期就培養這個習慣,知識轉譯的能力可以持續整個學術生涯,也可以形塑校園中討論科學的風氣和文化!

道納非常鼓勵台灣的科學家走出實驗室與大眾對話。
攝/ TW

讀生科,一生科科?現在正是投身生科基礎研究好時機

除了鼓勵科學家和準科學家培養知識轉譯的能力,道納也鼓勵尚未確定未來方向的學生投入生科領域。她提到:「現在的生命科學領域的前景很看好,有越來越多優秀的新技術被研發出來,是投入生命科學領域的好時機。」

另外道納也聊到,CRISPR/Cas9 基因體編輯技術能夠如此快速地被應用,是因為基礎研究很紮實。這說明了基礎研究需要更多人的支持,紮實的打底之後才會有更多機會轉向應用端,形成更完備的新技術。

因此道納想對生科領域的莘莘學子說:「如果你正在思考未來的研究方向,不一定要選擇可以明顯看見應用層面的研究主題,基礎研究也是非常值得投入心力的領域。」

The post 當科技發展跑在世界前面,科學家該做什麼?基因編輯技術 CRISPR 共同發明人——珍妮佛.道納專訪 appeared first on PanSci 泛科學.

引起上古神獸「拉馬克 V.S. 居維葉」演化論戰的埃及木乃伊鳥

$
0
0

公元 1798 年,尚未成為法蘭西大皇帝的拿破崙率軍入侵埃及此行除了大軍之外,也有一隊學者跟隨。在法國佔領埃及期間獲得一塊石碑,隨後法軍戰敗,石碑落入英國人手中,這塊石碑後來將成為破解古埃及文字的關鍵,並以「羅賽塔石碑」的名號聞名於世。儘管石碑本體沒能運回法國,卻仍是由法國人商博良率先解開古埃及文字的奧秘。

在拿破崙的埃及遠征之戰中,征戰之餘也打開了好奇心的缺口,啓發後來的埃及學。

法國人在埃及並非一無所獲,他們將一批文物成功運回法國;而在1802 年時,30 歲的聖伊萊爾 (Geoffroy Saint-Hilaire) 帶回幾隻埃及古鳥的木乃伊,隨後意外引發兩隻上古神獸 ── 拉馬克 (Jean-Baptiste Lamarck) 與居維葉 (Georges Cuvier) 的演化大論戰。[1][2]

A 是居維葉畫像,B 是拉馬克畫像。圖/取自 ref 1

居維葉表示:生物不演化

木乃伊回國的時候,居維葉與拉馬克是法國國立自然史博物館的同事,兩人對演化的觀點卻截然不同。1769 年出生的居維葉比較年輕,那時的他是 33 歲,已經是最頂尖的古生物學家。居維葉怎麼看演化?與其說他對「演化」的看法,不如說,居維葉徹底反對演化的概念,他堅持:生物不會演化

居維葉覺得各種生物都有個理想的典型,一種生物的身體每一部分都已經完美適應環境。假如身體任一部位發生改變,害得理想型不再完美,就會危害這位個體的生存。換句話說,居維葉認為物種是固定的 (fixity of species),不會隨著時間改變——雖然現在我們知道這是大錯特錯。居維葉是非常厲害的古生物學家,當然還是言之有物的:他從眾多的化石證據中,了解並證明生物是會滅亡的。雖然現在聽起來這好像是小學生都知道的常識,不過這番話在當年卻是劃時代的革命性創見,也因此奠定他一代宗師的地位。

問題是,居維葉知道古代曾有許多後來滅亡的生物,但他卻不認為那些滅團的生物,與現在的生物之間有任何傳承關係。號稱「古生物學之父」的居維葉,他的成就絕對配得上這個稱號。然而,比起拉馬克、達爾文、孟德爾等幾位上古神獸,他相對沒那麼有名,大概與反演化很有關係。

不過在居維葉那個年代,反演化才是主流,畢竟等到 50 多年後的 1859 年,達爾文正式發表《物種源始》時,多數人仍反對演化。

埃及聖䴉木乃伊引發的演化大戰的重要年代。圖/取自 ref 1

拉馬克你說說看啊:生物持續緩慢改變

拉馬克 1744 年出生,當年木乃伊回國時,他是 58 歲,比居維葉年長 25 歲,但拉馬克對演化的見解卻比年輕人居維葉激進很多。他認為:動物會不斷微幅改變以適應環境,除了少數例外。改變的趨勢通常是由簡單變複雜,而最複雜的是人類,所以人類才會位於演化的頂點(他的演化概念不只有「用進廢退」那麼單純)。拉馬克後來將畢生的演化見解寫成《動物哲學(Philosophie Zoologique)》,於 1809 年發表。

現在我們知道,拉馬克的演化論點雖然開風氣之先,卻有明顯漏洞,他只是比起反演化的居維葉正確許多。然而在那個時代,兩位都是最出色的學者,都希望可以壓倒對方,此時距今三千年的埃及木乃伊鳥來到他們面前,這恰好成為測試演化概念的絕佳材料。

生物會演化嗎?一個結果,兩種截然不同的解讀

他們見到的木乃伊鳥裝在陶罐裡,當年是難得一見的標本(現在應該還是很難得啦)。一開始多數學者認為,古埃及人製作木乃伊的鳥是黃嘴䴉鸛 (yellow-billed stork,舊學名叫作 Tantalus ibis,現在改為 Mycteria ibis),不過這是錯誤的分類。

居維葉正確判斷出,木乃伊鳥是另一個沒見過的物種,他將其命名為 Numenius ibis,後來學名改為 Threskiornis aethiopicus,也就是埃及聖䴉 (Sacred Ibis)。

A 是黃嘴䴉鸛,B 是古埃及人製作木乃伊的埃及聖䴉。圖/取自 ref 1

居維葉獲得難得的樣本後,首度能夠實測他的演化觀點,或是說不演化理論;但是假如拉馬克是對的,距今三千年的古埃及鳥和現代鳥之間,型態將能觀察到差異。

在居維葉仔細測量埃及古鳥各項型態特徵後,結果令他滿意極了:埃及古鳥和現代同類相比,解剖特徵上沒有任何改變!

埃及古鳥三千年來沒有改變,居維葉喜吱吱宣告勝利:物種果然固定不變!

居維葉 1825 年正式發表論文,當時已經高齡 81 歲的拉馬克,仍然勇於捍衛畢生心血。拉馬克同意居維葉的量測結果,埃及鳥確實缺乏改變,但是他反駁:埃及三千年前的環境與現在沒什麼不同,而生物改變是為了適應環境。環境沒變的情況下,型態缺乏改變也只是剛好。演化的過程連續而緩慢,只經過三千年,又處於少有變動的環境中,累積的差異不足以被觀察到……

以下為設計對白:

「三千年都沒變化,就算更久也不會變啦!假如演化是漸變,不就是隨著時間慢慢累積嗎?三千年累積的結果是零,零乘以幾萬年還是零,更長時間也不會累積更多啦!」

演化大辯論

兩人持續交鋒,直到 1829 年拉馬克以 85 歲高齡去世為止。然而,拉馬克的演化概念已經影響一些當時的人。就在他去世隔年,法國爆發「大辯論 (Great Debate)」,兩派人馬激辯著那時尚未獲得演化之名的演化議題。

赫胥黎與威伯福斯……的特色畫像。圖/取自 wiki

《物種源始》發表隔年,也就是 1860 年時,演化論支持者赫胥黎 (Thomas Henry Huxley) 與反對者威伯福斯 (Samuel Wilberforce)在英國進行生物是否會演化的辯論,史稱「牛津辯論」。但事實上 30 年前的法國,就已經上演過類似的論戰。

大辯論一方主將是聖伊萊爾,他當年隨著拿破崙前往埃及,後來將木乃伊鳥帶回法國後引爆論戰。聖伊萊爾受到拉馬克影響,在運回木乃伊 28 年後接下火炬。他大致上支持拉馬克的觀點,主張生物會改變,不過他更加強調,生物是符合生物學法則 (laws and principles of biology) 的產物。(「生物學法則」就是後來的「演化」)

聖伊萊爾畫像。圖/取自 wiki

聖伊萊爾主要的對手當然是居維葉,那時也已經 62 歲。居維葉堅定不移,仍然認為物種固定不變,要解釋生物機能的存在,必需訴諸「神聖造物者的意志 (will of a divine creator)」。

居維葉的小正確與大錯誤

這段歷史能給我們什麼啟示?居維葉不是浪得虛名,他對解剖型態十分敏感,研究也符合科學方法。他獲得被錯誤分類的罕見標本後,先由微小的型態差異,正確判斷出那是一種從未記錄過的新物種。他又為了測試生物是否會改變的假說,比較埃及古鳥與現代鳥,由量測得到數據,做出三千年來沒有型態改變的結果。

居維葉行事按照科學方法,研究所得的結果也正確無誤,可是他反而更堅持己見,因此無法看穿演化的迷霧,最後做出錯誤的大結論「生物不演化」。

科學史上,居維葉不是唯一掌握正確結果,卻提出錯誤觀點的研究者;但是聲望像他如此崇高,被學界主流推崇,卻因錯誤觀點而不幸帶來長久負面影響的研究者,卻也不是那麼常見。

現在事後諸葛的我們可以說,單一研究不足以證實複雜的大議題,可是自己假如處於爭論當下,我們能明白科學證據的侷限性嗎?當主流權威提出詳實的證據,以堅定的語調發言,支持某一立場時,我們是根據證據與推演而認同他的觀點?或是因為權威講話一定是對的,由於信仰權威而盲目跟從呢?再者,兩百年後的我們能記取居維葉的教訓嗎?

居維葉雕像。圖/取自 BESAC

我名叫居維葉,學者中的學者,看看我的功蹟,以為物種會改變的對手們,誰能與我相提並論!

另一方面,「演化」不只是支持或反對這麼簡單,就算都是演化的支持者,對於生物怎麼演化也有不同見解。拉馬克是超越時代,主張演化論的先驅,但是他提出的演化機制,解釋現實世界卻不太管用。我們面對複雜的問題時,能避免陷入二分法思考的陷阱嗎?

就在居維葉與聖伊萊爾大辯論的同時,英國有位家世良好的青年,儘管就讀名校劍橋大學,卻常常不務正業四處遊蕩,讓他爸爸覺得這小鬼哪一天總要敗壞家門。隔年,畢業即失業而混不下去的英國青年,只好跳上一艘叫作「小獵犬號」的遠航船出國深造……大辯論後兩年,居維葉 1832 年 5 月也去世了,此時英國小鬼出海還不到半年。

延伸閱讀:

參考文獻:

本文亦刊載於作者部落格《盲眼的尼安德塔石匠》暨其 facebook 同名專頁

The post 引起上古神獸「拉馬克 V.S. 居維葉」演化論戰的埃及木乃伊鳥 appeared first on PanSci 泛科學.

追劇、加班都陪你!但你知道便利的調理食品是怎麼做的嗎?

$
0
0

本文由行政院環境保護署毒物及化學物質局委託,泛科學企劃執行

  • 文/ Sophia

在家追劇太燒腦?來一包拆封即食的滷味,觀影更享受!

公司加班太淒涼?叮一聲就可以吃的微波食品,溫熱身心又提升效率!

調理食品既方便,口味又多元,不僅有微波便當、火鍋湯包、低卡料理包等主食,也有滷味、串燒、帶殼毛豆等點心,已成為現代人生活良伴。

但是,許多人對於調理食品仍有各式各樣的疑問--例如,自己做的溏心蛋,可能冰兩天就不能吃了,但超商賣的卻能放這麼久,有什麼撇步?煮好的麵條經過冷凍再加熱,為什麼不會糊?能長時間存放的食品安全嗎?

莫急莫慌莫害怕,本文將帶你認識食品保存的秘密,並讓你更加了解如何選購食品才能兼顧健康、美味與便利。

經過精心設計而來的調理食品

架上琳琅滿目、包裝精美的調理食品,如微波便當、火鍋湯包、低卡料理包等,都是農畜水產原料經適當加工方式加熱調理後,再經過妥善包裝、儲藏、運輸、販售的食品,而消費者購買後僅需簡單處理即可食用。

市面上有各式各樣的調理食品,大致可分為常溫冷藏冷凍三類。

在這些方便快速的調理食品之中,有一部分是採用真空包裝的即食食品,這類食品若是殺菌條件、存放溫度、水活性、pH 值等因素控管不當,非常容易使肉毒桿菌滋生,大幅增加食安風險,因此,食藥署訂定的《食品良好衛生規範準則》也特別針對真空包裝即食食品規範食品條件、貯存、運輸及販賣過程等環節,以維護消費者健康。

若按食品的貯存及販賣溫度區分,大致可將食品分為常溫冷藏冷凍三類,調理食品也是。隨著其貯存、運輸及販賣產品的溫度差異,為確保食品衛生、安全及品質,業者製造加工食品時需要考量及控管的因子也不同。

例如,常溫下存放食品,為增加產品貯存、運輸及販賣過程之穩定性,製造時著重商業滅菌和包裝;冷藏下存放食品,為提供消費者具有營養及新鮮產品,送到消費者手上前的保存溫度及時限有嚴格控制;冷凍下存放食品,則為避免長時間冷凍產生冰晶破壞食物的口感,加工製程加快溫度降低速度。以上關鍵環節都是為了提供衛生安全且兼顧美味可口的食品。

常溫調理食品製程關鍵:商業滅菌及包材挑選

常溫貯存的咖哩牛肉、紅燒牛腩、火鍋湯底包等常溫真空調理食品,會經過高溫高壓的商業滅菌,務求食品在正常商業貯運及無冷藏條件下,不能讓有害的微生物及其孢子滋長造成危害。

除此之外,包裝材料也蘊藏玄機。一般常溫調理食品多使用複合材料製成的「積層袋」包裝[註],其內層為聚丙烯 (PP),該材質通常耐熱、耐酸鹼、油、酒精,適用範圍比較廣;第二層通常是可擋光、防止空氣通透的鋁箔;最外層則是防水聚酯膜。隔絕了外界的水、空氣、微生物,使得常溫調理食品就像個軟罐頭,方便在室溫下保存,而且不必添加防腐劑。

調理食品的包裝皆須遵照食品器具容器包裝衛生標準,其內層由聚丙烯製作不需添加塑化劑,而印刷顏料也印在積層袋夾層內,所以不必過度擔心復熱時會有染劑或塑化劑溶出問題。而近幾年全透明且防空氣通透的積層袋「殺菌軟袋」問世,讓消費者能直接看到裡面的真材實料,也更方便以微波復熱。

冷凍形式比較適合保存蔬菜,所以食材範圍更加多元。圖/ congerdesign@pixabay

不過,通常經過高溫高壓處理後,食材的形狀、口感及風味便會明顯改變,為了讓產品風味更接近現煮料理,必須仔細挑選適合的食材,並且設計預煮程度。例如,食材需要挑選最適合燉煮的部位,或者只煮到半熟,等到高溫殺菌階段再煮至全熟等等,這些都是減少耗損,也讓成品更好吃的小祕訣。

而蔬菜特有的明亮色澤、鮮脆口感,以及不耐熱的微量營養素,往往會在高溫殺菌過程中流失,成為常溫調理食品的一大限制。為了增加料理菜色選項,再加上臺灣冷鏈系統漸趨成熟,近來有許多冷凍、冷藏調理食品興起,搶占市場。

冷藏、冷凍調理食品製程關鍵一:優化系統,避免污染

圖/ WilliaM_oNG @pixabay

常見的冷凍類調理食品(如冬天常吃的火鍋湯包、藥膳湯底包)與冷藏類調理食品(如超商微波鮮食),為了降低微生物污染,應從頭到尾嚴守乾淨的製程。

例如,許多業者會與農家簽約,從原料種植階段就控管生長環境與規格,接著,對原料進行各式檢驗,如重金屬、農藥殘留等,以利直接使用,或者送入調控溫濕度功能的乾物室,暫存供作後續加工。

而製作調理食品的廠房,必須符合食品良好衛生規範準則,有些業者甚至會建造無塵室等級的廠房,以生產嬰幼兒副食品等產品。有些工廠則是設置從烹煮到包裝全自動產線。

冷藏、冷凍調理食品製程關鍵二:急速冷卻,防微生物滋長

製造冷藏、冷凍調理食品的過程,並非如一般人烹調後再放著冷卻而已,為了確保食品安全,還需要經過「急速冷卻」這道手續。

為什麼這件事如此重要呢?一般而言,烹煮時會讓食品中心溫度達85℃左右,並且維持一分鐘,以消滅大部分微生物,但是,烹煮後仍可能受到人為污染、空氣飄落的孢子等因素影響,令微生物滋長。在7~60℃這段溫度帶,有些微生物能快速繁殖,又被稱為危險溫度帶,若食品愈快通過這些危險的溫度區間,愈能減少細菌繁殖機會。

此外,由於食品內飽含水分,若遇到最大冰晶生成帶(-1到-5℃)時,最好急速降溫通過這段溫度範圍,水分結晶顆粒才會比較小,以免撐破食物組織。否則,若食材細胞因被破壞而出水,就像豆腐變成凍豆腐,其組織、口感都會改變,縮短食品停留在最大冰晶生成帶的時間,才能盡量保持食品口感。

冷藏、冷凍調理食品製程關鍵三:全程溫控、掌握時限

加熱微波便當等冷藏類調理食品就需要小心注意時間。圖/By Mega Hammond – , CC BY-SA 2.0

冷凍調理食品的貯存、運輸及販賣,全程皆須在-18℃以下進行,以維持溫度恆定。這麼做有3項理由:

  1. 避免反覆地冷凍、解凍,造成冰晶生成或變大,破壞食物組織及口感;
  2. 減緩營養流失;
  3. 抑制微生物生長。

雖然全程冷凍保存比較麻煩,但許多連鎖餐廳中央廚房仍選擇推出冷凍形式的調理食品,原因就在於和常溫調理食品相比,冷凍形式可讓營養流失少、食材風味留存也比較好。

冷藏類調理食品的特色是比常溫調理食品更能留存風味,但又比冷凍食品容易復熱、食用。不過,為了避開微生物孳長的危險溫度帶(7~60℃),食品冷藏溫度必須維持在7℃以下、凍結點以上,因此,從製作、貯存、運輸、販售到食用,都必須留意溫度及時限掌控。

合法適量使用食品添加物,確保食安與品質

為了增加產品儲放時間,抑制微生物生長產生危害,常溫調理食品通常會經過高溫高壓殺菌,而冷藏或冷凍調理食品主要以溫層控制來抑菌,再加上良好的製程環境管理以維護食安,不過,為什麼調理食品包裝上還有一串落落長的食品添加物名稱呢?它們在調理食品中究竟扮演什麼樣的角色?

其實,調理食品外包裝標示成分可能見到抗氧化劑(如維生素E、維生素C)可以防止食材成分(如油脂)氧化,避免食品變色或走味。

玉米糖膠屬於食品添加物之粘稠劑(糊料),是食用膠的一種,它是由細菌產生的多醣,兼具增稠與乳化安定的效果,可使湯水變稠,有助於混料均勻。一旦需要分裝一大桶的紅燒牛腩時,不至於產生這包全是蘿蔔,另外一包全是肉的狀況,而且黏稠的醬料還能包覆飯、麵,使得入口滋味更佳。

添加食用膠的另一項好處是讓水的凍結點下降,使得部分食品冷凍時,水分不會完全凝結固化,這也是熟麵、熟水餃皮經冷凍、冷藏再復熱後,仍可保持彈性的秘訣。除此之外,在產品中添加食用修飾澱粉(如醋酸澱粉)同樣也能提供抗凍效果。

食品添加物調味劑胺基乙酸,加在食物裡可以加強風味,而且吸水性強,可「搶走」微生物所需水分,降低食品水活性,達到抑菌目的。

臺灣訂定食品添加物規範採取「正面表列」,意思是不在表列中的食品添加物,就不能使用;此外,針對使用範圍、限量及規格訂有標準,且業者產製食品時如依使用限量規定合法添加食品添加物,尚不致造成消費者健康之危害。

購買前注意標示,食用更放心

冷凍類調理食品依食用目的,還可分為需要再次加熱與解凍即食兩種。圖/flickr

無論是常溫、冷藏、冷凍調理食品,消費者購買時,記得挑選包裝完整、且有完整標示的產品,尤其冷凍類調理食品若是從包裝外就看得出碎冰、變色、變軟、解凍等現象,最好不要購買。

此外,冷凍類調理食品依食用目的,還可分為需要再次加熱解凍即食兩種,例如,冷凍火鍋包、高湯包之類的產品,需經再次加熱,才能食用;而冷凍帶殼毛豆,基本上只需解凍就可以吃。無論是哪一種,都必須依「市售包裝冷凍食品標示規定」,除了須標示出內容物名稱、食品添加物名稱、營養標示等,還須加標保存方法及條件;假如產品需加熱調理才能食用者,也應另外加標加熱調理的條件,因此,消費者食用前,別忘了仔細閱讀產品包裝標示。

此外,若是產品屬於真空包裝食品,消費者也應閱讀包裝註明的「須冷藏」、「須冷凍」及「非供即食,應充分加熱」字樣,適當保存及料理,以確保安全。

回應開頭對於調理食品的眾多疑問,調理食品其實是經過層層細緻的設計,為抑制腐敗菌和病原菌使用「柵欄技術」控制食品的水分活性、pH值或溫度等條件。包括加入特定的食品添加物,維持食品的品質、風味;控管製程,讓細菌無法孳生;運用特殊包裝,使得香味不至於散失等等技術,來確保食品安全、方便保存,又兼顧口感。

能夠安心上桌、瞬間美味用餐的調理食品,可說是食品科學精心造就的結晶啊。

[小字典]

積層袋與殺菌軟袋

積層袋是一種使用複合材質製造軟袋總稱,積層袋設計可有效鎖住食品氣味、保住水份、確保內容物品質,同時也是強韌的包裝材質。但最常見含鋁箔的積層袋並不適用於微波爐加熱。

而殺菌軟袋則是積層袋中設計用來進行商業滅菌中的一種袋形,不僅利於長期保存食品,也可耐高溫;如不含鋁箔的材質還可方便以微波復熱。

參考資料

本文由行政院環境保護署毒物及化學物質局委託,泛科學企劃執行

The post 追劇、加班都陪你!但你知道便利的調理食品是怎麼做的嗎? appeared first on PanSci 泛科學.

臺大論文造假案後續:認定造假竟以勘誤處理?誰才能建議期刊撤稿?──《科學月刊》

$
0
0
  • 蔡孟利/國立宜蘭大學生物機電工程學系教授。

臺灣大學不具自治該有的品格,教育部沒有善盡監督的責任,科技部缺乏計畫管考的能力。今(2018)年 10 月 1 日,《癌症研究》(Cancer Research)這本著名期刊中的 1 篇簡短撤稿聲明,可以作為這些事實的佐證。

這篇不到 150 個英文字的撤稿聲明全文如下:

This article is being retracted at the request of the editors. Following an institutional review by the National Health Research Institute (Taiwan, Republic of China), the authors were unable to provide original data for any of the figures published in the article, and the investigation team concluded that the data were fabricated intentionally. As a result of these findings, the institution recommended retraction and, upon internal review, the editors agree with this recommendation. A copy of this Retraction Notice was sent to the last known email addresses for all nine authors. One author (M.-C. Hung) agreed to the retraction; one author (J.-L. Su) did not agree to the retraction; the seven remaining authors (T.-Y. Chang, H.-A. Chen, C.-F. Chiu, Y.-W. Chang, T.-C. Kuo, P.-C. Tseng, and W. Wang) did not respond.

此篇聲明清楚地說到,因臺灣的國家衛生研究院調查後認定該篇論文的數據為蓄意造假,所以國衛院具體建議該期刊應撤銷此論文;該期刊的編輯群經過內部討論之後決定接受國衛院的建議,主動撤銷此論文的刊登。而期刊也將這項撤稿決定副知該篇論文作者群,雖然只有 1 位作者(洪明奇)同意,通訊作者蘇振良不同意,而其他 7 位作者則對此事沒有表示意見,但目前該篇論文仍然已經被《癌症研究》註記為「已撤銷刊登(This article has been retracted.)」。

論文數據蓄意造假是現今學術界常有的爭議。圖/pixabay

造假事件的後續發展

然而,截至今年 11 月 5 日為止,當初臺大論文造假案中被科技部、教育部及臺大認定為造假的 11 篇論文中,除了事件初期 2 篇主動撤稿的論文,其餘的,在事件經過 2 年之後,仍然高掛在那些傑出期刊的版面上受眾人引用,仍是具有高影響係數的學術著作,也就是說,發表造假論文的人,依舊是學術界中優秀的學者。儘管臺大、科技部和教育部都審定為造假,但這 11 篇中的其中 3 篇,竟還完成勘誤的程序 [註],將當初被質疑為造假的地方,以抽換圖表的方式修正,成為依舊被期刊認可、正確無誤的論文。

筆者曾在去(2017)年 1 月號的《科學月刊》評論中提到:「對於科學社群而言, 1 篇造假的論文,特別是因造假而發表在頂級期刊的論文,會讓後續從事此類研究的人員虛擲了金錢與青春,更會拖累了相關領域的進展。所以先讓有問題的論文下架,不要讓其妨礙科學的進展,降低對科研公領域的衝擊,是處理學術倫理事件的第一要務。」

這是個不需專業知識,僅憑常識就能夠清楚判斷的道理。就像政府若發現某黑心食品在市場流通,第一要務一定是先將該黑心食品全面下架,若發現某樣機器零件的安全係數是偽造的,當務之急也一定是設法先全面回收;而不是兩手一攤無奈地表示:基於那是製造廠商與販賣場所之間的商業關係,如果製造廠商沒有主動至販賣場所將黑心產品下架回收,政府便無任何可使力的地方。

有問題的論文就如同有問題的食品一樣,若不及時下架,將會帶來許多問題。圖/pixabay

然而,這種正常人一定會想到的正常做法,臺灣的教育部、科技部與臺大卻怎麼想都想不到!除了去年 3 月報載科技部生科司司長蔡少正的名言:「對於現在已經發現有問題的論文,如還沒去函相關期刊更正,基於作者與期刊間約定,作者應主動與期刊更正,科技部無任何可使力的地方。」之外,科技部也在去年 3 月底發布新聞稿表示:「科技部以專業審查原則,依循法規積極審理違反學術倫理論文。關於學術期刊論文之撤稿或更正,可參考國際出版倫理委員會(Committee on Publication Ethics, COPE)訂定之規範。國際出版倫理委員會主要是針對期刊編輯(editor)、作者(author)、研究機構(research institution)、出版期刊的學會執行委員(Board of Directors of Learned Society Journals)、審查委員(peer reviewers)等提出相關的指引,其中並無對提供研究經費的單位(funder)可以要求期刊撤稿的敘述。」企圖再次說明科技部不需也不能主動去函相關期刊要求撤稿。

而在去年 8 月底,筆者就那些被認定為造假論文的撤稿與勘誤問題向教育部及科技部提出質疑,科技部的回覆是:「查上開違反學術倫理事證業經專業軟體分析比對並完成審議在案。至於是否同意論文更正,事屬期刊編輯之判斷與權責,本部原則尊重。」;而教育部的回覆則是:「有關張正琪涉及違反學術倫理等情事,因期刊是否予以勘誤或撤稿,係屬該期刊與投稿人雙方著作財產權授與契約規範處理,並不受政府部門是否認定違反學術倫理影響。」

面對論文造假爭議,科技部的回應傳遞了他們不需要也不回應的態度。圖/pixabay

勘誤vs造假

在討論教育部與科技部是否瀆職之前,關於「勘誤」的觀念必須先界定清楚。在過去2年來各單位於調查造假案的過程中,造假者最常用的說法是有問題的圖表都是誤植,因此都是可勘誤的無心之過。雖然「勘誤」為專業期刊上常常可以看到的啟事,但是,可被大眾接受的「誤」,應該是非蓄意為之的偶發性錯誤才行;如果是蓄意加工變造、偽造,那就不能以勘誤來處理,只能撤銷其刊登。

而在臺大造假案中,被判定為主要造假者所犯的錯誤類型並不是非蓄意為之的偶發性錯誤。因此,若沒有人善意告知期刊編輯「誤」的類型是善意或蓄意,期刊總編輯在缺乏相關事證下,當然只能信任原作者的說法,讓造假論文變成可勘誤的文章。

撤稿的權限與職責

那,到底造假者的任職單位、學術行政管理單位、提供研究經費的單位,甚至是路人甲乙丙能不能去函期刊,檢證告訴他們在其刊物上有造假的論文,好讓期刊能夠據以作為調查與判定的依據呢?目前世界上找不到任何一本專業期刊有規定誰才有資格檢舉問題論文,更遑論會有限制說檢舉者不能是各國的官方調查機構。不過,臺灣的教育部和科技部卻告訴人民:他們辦不到。但是今天,實例不假外求,臺灣的國家衛生研究院以實際行動告訴我們,可以的,而且是有效的。因此,除非臺灣的科技部與教育部能提出足夠論證說明為什麼國衛院可以而它們不可以,或是科技部、教育部乾脆承認調查有誤,冤枉了被指控為造假的作者。否則,科技部的「至於是否同意論文更正,事屬期刊編輯之判斷與權責,本部原則尊重。」與教育部的「係屬該期刊與投稿人雙方著作財產權授與契約規範處理,並不受政府部門是否認定違反學術倫理影響。」,兩部會有志一同兩手一攤,什麼作為也沒有的說詞,就會是兩中央部會嚴重瀆職的證明。

而臺大,在高舉「大學自治」到處裝可憐的時候,請不要忘了「大學自治」的基礎是什麼?那是因為大眾認為在大學裡工作的人,不管是對知識與學問的追求、對道德與誠信之自律,都比一般人有著更高的自我期許,所以不需要政府以行政權力過度干涉,要讓大學自己管理自己,好讓大學成為社會的良心與國家進步的動力。所以,如果國衛院可以在事發不到 1 年半的時間內就促成造假論文自期刊上撤稿,那臺大在經過 2 年之後,又要以什麼理由來說明自身的怠惰與瀆職?而臺大又有何資格向大眾證明「國立臺灣大學」值得「大學自治」這 4 個字?

[註解] 3 篇被認定為造假但目前已完成勘誤的論文如下:

  • Corrigendum to “Connective Tissue Growth Factor and its Role in Lung Adenocarcinoma Invasion and Metastasis”, Journal of the National Cancer Institute, Vol. 110 (6): 683, 2018.
  • Correction to “CCN2 inhibits lung cancer metastasis through promoting DAPK-dependent anoikis and inducing EGFR degradation", Cell Death and Differentiation, 2018.
  • Corrigendum to “MicroRNA-17/20a functions to inhibit cell migration and can be used a prognostic marker in oral squamous cell carcinoma [Oral Oncol. 49 (9)(2013) 923–931]", Oral Oncology, Vol. 72: 202-203, 2017.

 

本文轉載自《科學月刊》2018年12月號

一個在數位時代中堅持紙本印刷的科普雜誌,讓你在接收新知之餘,也能感受蘊藏在紙張間的科學能量。

The post 臺大論文造假案後續:認定造假竟以勘誤處理?誰才能建議期刊撤稿?──《科學月刊》 appeared first on PanSci 泛科學.

日本籍科學家近年屢獲諾貝爾醫學獎,是怎麼辦到的?──《科學月刊》

$
0
0
  • 林翰佐/銘傳大學生物科技學系副教授,科學月刊總編輯。

近年在科學獎項上表現傑出的日本,是如何辦到的?

每年10月份起,伴隨著一絲秋意,年度科學盛事諾貝爾獎的得獎名單陸續揭曉。每年的此時是《科學月刊》編輯部最忙的時候,為了讓讀者對年度諾貝爾獎得獎者及其研究有更深入淺出的瞭解,在得獎名單公佈之際,科月編輯部便會邀請國內相關領域專家撰文,匯集於 12 月號的「諾貝爾獎」專輯,以饗大眾。

這是一個需要與時間賽跑的工作。同樣地,今(2018)年這項專輯的籌劃工作也正緊鑼密鼓地執行當中,請大家拭目以待。

近年來,日本籍科學家在諾貝爾生理學或醫學獎(簡稱醫學獎)有相當的斬獲。在 2012 年以前,原本只有 1 次醫學獎獲獎紀錄的日本,近 7 年來卻有高達 4 次的獲獎紀錄,分別是 2012 年的山中伸彌(iPSCs幹細胞)、2015 年的大村智(蛔蟲的治療)、2016 年的大隅典良(細胞的自噬機制)以及 2018 年的本庶佑(發現免疫細胞的負回饋機制併用於癌症的治療),彌補了原先日本在生醫獎項上得獎數偏低的遺憾。

2018年日籍諾貝爾生理學或醫學獎得主:本庶佑。圖/wikipedia

直至目前為止,日本籍科學家總共獲得了 23 次諾貝爾獎科學類獎項的殊榮,包括 11 次的物理獎項、7 次的化學獎項與 5 次的醫學獎項。從世界的角度來看,日本籍科學家的整體表現也相當亮眼,除卻美國(333次)、英國(104次)、德國(90次)及法國(37次),目前暫居排行榜的第 5 名。

日本人是怎樣辦到的?傳統上我們會認為,東西方教育理念的不同造就日後在科學表現上的差異;西方的教育講究順勢而為,鼓勵孩子探索自己喜歡的事物,東方式的教育則以集體式管理為主,強調規矩以及潛移默化的形塑個人未來應有的社會規範,在此筆者並無意評論 2 種制度的孰優孰劣。

只不過,東方式教育發展極致的日本,其實在科學上的表現也能同樣的傑出,令筆者想要瞭解一下其中的道理。臺灣的教育體制其實受日式教育影響極深,早年筆者於國、高中階段經歷的髮禁及聯考制度,均為日式教育的翻版。在日籍科學家發光發熱之時,臺灣能否也能有相對的優異表現?這是筆者想要探討的主題。

筆者雖未親身經歷日式體制,但周邊不乏有於日本進行科學研究工作經驗的朋友,一陣閒聊之下歸納些許關鍵,在此野人獻曝,跟各位讀者分享。

科學學習氛圍,帶來基礎研究的能量

相較於臺灣,日本人對科學學習是比較熱衷的。這點可以從臺灣的科學啟蒙書籍大多從日文書籍翻譯而來,可以見微知著。學術獎項的取得其實有點類似於參加國際上的體育競賽,雖說最終榮耀歸於一人,事實上背後還涉及許多無名英雄的付出。

以生物醫學相關的研究為例,實驗室研究人員的研究素質、誠信與對研究計畫的執行效率,攸關最後學術成果發表的品質及其對科學社群的影響力。實驗計畫主持人即便有著無與倫比的聰慧智力,缺乏強而有力的專業團隊,透過實驗驗證理論基礎也是枉然。

團隊人力的培養有賴社會氛圍的支持,有如日本職棒市場的雄厚能量來自於全民棒球運動的基礎。如果說大家對於基礎科學研究興趣缺缺,自然缺乏這種推升的動能引領科學研究超凡入聖。

閱讀習慣,鍛鍊獨立思考的能力

想要針對某一個議題上有別於前人之開創性的見解,需要大量而廣泛的閱讀,然後透過獨立思考來獲得。圖/wikipieda

相較於臺灣,日本人的閱讀習慣是好很多的。這點可從兩地出版業的榮枯略知一二。閱讀習慣為什麼會跟科學能力有關聯呢?科學研究注重研究上的新穎性(novelty),想要針對某一個議題上有別於前人之開創性的見解,需要大量而廣泛的閱讀,然後透過獨立思考來獲得。

基於日人的閱讀能量,出版界有著合理的利潤,將大量的國外書籍翻譯成日文,形成一股正回饋(positive feedback),滋養著國民獨立思考的基礎,這使得日人在相關創造性產業的開發均較亞洲各國有長足的領先。這種「全面翻譯」的方式當然也有它的缺陷,其中一項問題便在於日本國人普遍性外語能力的薄弱,反映在托福等國際性英語測驗的平均成績上。英文化的不足也反映在日本在國際期刊上投稿數與投入經費不成比例的問題。

有關於教育上「國際化」,「英文化」一直是國內教育推行目標,立意是良好的,不過筆者認為最大的問題還是來自於執行層面能夠真正落實的程度,這其實與學生的素質息息相關。例如大學中的科學教育常常標榜原文書教學,但囿於學生英文能力,往往變成專業沒學好,英文也沒學好,造成雙輸的格局。筆者認為優質基礎科研教科書的中文化仍然是臺灣科技推動的基礎,學生需要透過相當量上的閱讀形塑屬於自己的科學觀。

研究團隊組成,集中科學動能

日本實驗室文化自成一格,具有相當的組織性,研究團隊由 1 至數名教授領軍,向下由副教授、助理教授、助教、助理、博士後研究員及研究生所組成。相較於臺灣,研究室的規模通常較為龐大,且每個團隊中學術專業人員比例較高。

這樣的文化有利有弊,主持教授在資源、研究方向及人事權上擁有相當的權力,考驗著體制內的種種人性,但若指揮調度得當,大編制的研究單位好處是科研動能得以集中,對於有價值的研究主軸可以乘勝追擊,取得主要的學術成就。

臺灣近年來透過鼓勵整合型研究計畫的提出企圖將研究能量予以整合,其中不乏有相當優異的成果,不過這種任務性的編制團隊能否透過互動激發出真正的研發能量,需要更細膩的政策配合以及考驗著計畫總主持人的智慧。

日本科研的成本效益偏低

對比臺灣,日本整體科研體系的花費是巨大的。目前,日本科學界的年度預算約占 1400 億美元上下,約佔世界科研預算的 10%,不過國際期刊中文獻的產出並未達到相對的成效。根據荷蘭著名期刊出版商 Elsevier 公司所做的統計分析顯示,日本科學家平均每 100萬美元的科研預算投資僅造就 0.7 篇科學文獻的產出,相較於第一名的荷蘭(3.7)低上許多。日本在世界期刊論文發表數於近年來更有明顯下降的趨勢,在 2015 年甚至被急起直追的印度超越,總排名滑落至世界第 5。

他山之石,可以攻錯

科學研究的成效是什麼?是得到諾貝爾獎的光環加持,學術期刊發表數,全民素質的提升,抑或是科研活動所產生的產業技術推動力?一直以來就是科學界爭論的議題。這是一個相當複雜的議題。但無疑的,時至今日,日本籍科學家在諾貝爾獎項上的亮麗表現,是長期全民投入的開花結果。

相較於臺灣,日本科研環境仍是令人相當羨慕的,雖然收入不豐,科學家在日本社會上仍然保有相當的地位,年度科學經費中的80%來自企業出資,使得科學研究議題與產業形成更密集的結合,暢通未來高科技人才培育後的就業管道,筆者認為這些都是值得臺灣思索以政策形塑科研體制時的參考。

延伸閱讀

  1. 日本諾貝爾獎得主,https://goo.gl/E6thbb
  2. 各國諾貝爾獎得主人數,https://goo.gl/4VPy6N
  3. 楊子晴,〈荷蘭出版社調查指出日本科研現狀:投入大成果少〉,《環球網》,2018年3月26日,https://bit.ly/2CgPK1d

 

〈本文轉載自《科學月刊》2018年11月號〉

一個在數位時代中堅持紙本印刷的科普雜誌,

讓你在接收新知之餘,也能感受蘊藏在紙張間的科學能量。

The post 日本籍科學家近年屢獲諾貝爾醫學獎,是怎麼辦到的?──《科學月刊》 appeared first on PanSci 泛科學.

萬磁王再度降臨?!300 萬人跨年夜搭捷運就能改變地球磁場嗎?

$
0
0
  • 科學新聞解剖室-案件編號 30

案情

時序又將進入年底全台瘋跨年的期間,其中最大場的活動就是台北市政府的跨年慶典晚會,數十萬人湧入台北市,市府每年最後如何指揮交通、捷運疏通等等成了新聞焦點。2017 年 11 月卻出現令人嚇到吃手手的新聞,聯合報報導〈創全球之先重大發現 跨年夜北捷載量大改變地球磁場〉,內文提到:

中研院與中央大學長期監測大屯山火山活動,但在 2012 年到 2013 年跨年夜,測到地球磁場變化影響火山監測。團隊為此追蹤一年多,隔年有重大發現,測得台北捷運在密集營運的情形下,會造成地球磁場較明顯的改變。研究成果今年暑假發表,近日刊登於歐洲頂尖期刊《Terra Nova》,是全球迄今唯一發表大眾運輸會造成地球磁場改變的重大發現……

這一則新聞報導在去年引起轟動,也讓許多人懷著忐忑的心情,好奇萬磁王是不是又要在今年的跨年夜再度光臨台北捷運?

新聞乍看之下擁有豐富的背景知識,不僅有中研院、中央大學背書,還有歐洲頂級期刊撐腰,是一篇充滿學術氣息的報導。但解剖員從去年就覺得有點怪怪的,300 萬名乘客真的是造成地球磁場改變的罪魁禍首嗎?如果地球磁場這麼容易就可以發生改變,那麼會不會只要我們齊心齊力、萬眾一心,就真的可以改變許多大自然的現象?「人定勝天」不再僅是勵志金句,而是真有其事嗎?

解剖

一、「地球磁場」vs「量測地球磁場」:我們乍看很像,但我們不一樣

先從解剖員的專業地科背景來說個結論:地球磁場是不可能被人為改變的!

首先,我們必須釐清什麼是「地球磁場」?它又是怎麼形成的?

我們可以把地球想像成一個大型磁鐵棒,而在大磁棒周圍所分布的磁場,就叫做地球磁場,依照當前科學界所認可的「自激磁學說」(Self-exciting dynamo)解釋,地磁場的形成原因有許多不同的來源,其中有超過九成來自外部地核中液態金屬運動所產生,地表擾動所產生的影響非常非常小,因此,地球磁場是不可能被人為改變的[1] 

我們可以把地球想像成一個大型磁鐵棒,而在大磁棒周圍所分布的磁場,就叫做地球磁場。圖/Zureks @Wikimedia Commons

量測地球磁場」則又是另一個不同的概念。當我們站在地表上量測地球磁場時,量測的是該地當時的總磁場強度,測得的資料除了地球磁場之外,同時亦會受到其他訊號干擾,這些雜訊可能來自鄰近的高壓電塔、鐵公路、施測人員身上的金屬物品、太陽輻射、地殼活動等等,這些因素都會影響我們量測到的磁場資料。

所以量測出來的數字等於「地球磁場」嗎?看到這裡,大家是否隱約覺得這篇新聞有點問題了呢?這篇新聞就是將「地球磁場」和「量測地球磁場」兩個概念混為一談,「地球磁場」和「量測地球磁場」有著根本性的差異,兩者之間不能畫上等號。

我們用天文學觀測星星做進一步的解釋與類比。在繁華的都市裡,過度使用照明設施,在光線照亮夜晚的同時,原本閃耀的星空會被周遭人為的燈光所覆蓋掉,讓星空的能見度明顯的下降,夜空裡的星星越來越黯淡,對天文的觀測造成嚴重的干擾,這就是我們所謂的「光害」;因此,若站在城市平地上透過望遠鏡觀測星星,而發現星星模糊不清時,我們會說嚴重的光害使我們看不見原本閃亮的星空,不會說「是地球光害使遠在天邊的星體們不會發光了!」

若站在城市平地上透過望遠鏡觀測星星,而發現星星模糊不清時,我們會說嚴重的光害使我們看不見原本閃亮的星空,不會說「是地球光害使遠在天邊的星體們不會發光了!」圖/Aaron Logan @Wikipedia

試想看看,若有一則新聞的標題是這樣下:「台北燈火熄滅北極星!?」那我們人類大概真的成為萬物主宰了,開個燈就可以毀滅全宇宙的恆星,讓他們失去發光的能力。這樣的話,人類可能再也不用擔心外星人入侵,因為我們只要點燈,外星人就會因為沒有自己的太陽,直接在自己的星球上被滅絕。

若把光害的案例對照這次新聞案例,把「星體發光能力」比照「地球磁場」,而「用望遠鏡觀測星光」比照「量測地球磁場」,應該就可以清楚地看出「地球磁場」與「量測地球磁場」兩者的差異。

二、研究重點不在「改變地球磁場」,在「揪出擾亂地磁觀測的因素」

新聞報導中引述許多讓人覺得可信的科學研究出處,但是科學研究文獻裡面真的是這樣說的嗎?要瞭解此次事件,可能需要還原整體的研究背景,也就是科學家們究竟是如何抽絲剝繭地找到「台北捷運」這位干擾者?

其實這個研究一開始並不是為了瞭解台北捷運的磁場變化,而是監測陽明山大屯火山群時,發現每天都規律地出現異常的地磁量測結果。他們利用了許多組數據分析,經過不同地點、不同時間的資料比對後,科學家首先發現,只有台北盆地的測站有異常現象,花蓮的觀測是正常的;其中最關鍵的是,跨年夜當天地磁被擾動的時間長度突破以往,平日凌晨一點半以後地磁擾動就會大幅減少,但在跨年夜時,就算過了凌晨一點半,地磁的觀測結果依然持續被干擾。根據這樣的額外線索,科學家才得以透過「台北捷運跨年夜不收班」,對照「平日準時收班的捷運」,找到了每天都在擾亂地磁量測結果的嫌疑犯

這項研究並不是為了瞭解台北捷運的磁場變化,其實是要告訴我們:捷運造成的磁場變化會影響量測地磁的結果。圖/截圖自研究

科學家發現了嫌疑犯後,嚴謹地對捷運系統的疑點抽絲剝繭。他們比對了平時準時下班的捷運營運數據和地球磁場的資料,發現平日地磁場被干擾最嚴重的 3 個時段,就是捷運行駛最密集的交通尖峰時間,而科學家同時也發現,磁場量測的變化確實會被捷運行駛過程造成的電流所影響。

追根究柢,這個研究結果其實是要告訴我們:捷運造成的磁場變化會影響量測地磁的結果。這個研究結果重要嗎?除了監測大屯火山活動具有影響民生議題的重要性之外,研究團隊花了很多精神排除各種可能因素,最終找到捷運會影響量測地磁的結果,這在地震量測上具有突破性的意義。

由於地震或火山的監測方式中,多數都在找出影響異常的因素,才能聚焦在要觀測的重點上,因此研究團隊找出影響的關鍵要素,濾除監測火山活動的雜訊,這項發現在科學研究上具有重要的學術及應用價值,只是在媒體不瞭解這個價值所在,因此在不識貨的誤解中也讓整體的報導方向歪掉了。例如那段期間各大媒體的標題:〈蝦米?北捷竟能造成地球磁場異常〉〈什麼! 北捷竟造成地球磁場異常〉〈你我都推了一把?跨年夜北捷爆量改變「地球磁場」〉〈300萬人瘋跨年倒數,讓研究團隊發現北捷影響地磁場〉,實在非常勁爆,不僅畫錯重點,同時也錯得離譜。

圖/新聞截圖

三、還原案發現場:專家真的是這樣掛保證的嗎!?

回過頭想想,這篇報導不是有採訪研究團隊的成員嗎?如果都有專家親身掛保證,怎麼還會這樣出錯呢?

解剖員搜尋到相關的採訪影片中,侃侃而談的科學專家顏宏元教授似乎成為了媒體的最大靠山。顏教授致力於重力測勘學及磁力測勘學的研究,而且也是此項研究計畫參與人之一,依照顏教授的專業程度有可能弄錯「地磁」與「量測地磁」?會輕易說出北捷造成地球磁場異常這樣的話嗎?

我們再仔細看看顏教授在採訪影片中所說的:

……列車在運轉、運行的時候,它就一定會有雜散電流,我想這是一個全球性的問題……原來(凌晨)一點半到四點半之間,沒有磁場的改變,但是在跨年的時候卻有,我們根據這樣一個觀測結果,認為磁場改變跟捷運的運轉有絕對的關係……[2]

……監測大屯火山的時候,在跨年那天清晨,本來一點半到四點半是沒有訊號的,可是我們有看到磁場繼續被擾動,兩個磁力站在隔年清晨一點半到四點半,所謂跨年捷運不收班情況下,我們仍然看到這樣的訊號,……[3]

……列車間距比較短,所以它用電量比較大,所以這時候它對磁場的影響會比較大一點,離峰的時候用電量會比較小一點,所以相對來講,對磁場的改變也會比較小一點……[4]

細細分析顏教授的字句後,就可以發現,即使教授並沒有精確地指明被改變的是「量測到的地球磁場」,而是說「磁場改變跟捷運有關係」、「磁場被擾動」、「對磁場改變」,但可以瞭解他指的就是量測到的磁場強度,而且他從頭到尾都沒有說過「地球磁場被改變」這一句話,而新聞報導中的「地球磁場會被改變」完完全全是媒體腦補能力的徹底發揮。

即使教授並沒有精確地指明被改變的是「量測到的地球磁場」,而是說「磁場改變跟捷運有關係」,但媒體的過度詮釋恐怕無法呈現教授原意。圖/影音新聞截圖

況且,顏教授使用的是「磁場」一詞,磁場並不等於地球磁場;以生活周遭的物品為例,握在手上的磁石、正在使用的充電線,任何具有磁性、電流的物品,都有可能造成磁場,地球磁場只是其中一種,專指由地球內部產生的大地磁場。依照顏教授的專業,不可能弄混磁場與地球磁場,但我們來看看記者是怎麼寫的:

……團隊為此追蹤一年多,隔年有重大發現,測得台北捷運在密集營運的情形下,會造成地球磁場較明顯的改變。研究成果今年暑假發表,近日刊登於歐洲頂尖期刊《Terra Nova》,是全球迄今唯一發表大眾運輸會造成地球磁場改變的重大發現……

記者甚至擅自更動了顏教授的說法:

……顏宏元說,地球磁場的改變會間接影響軌道的電磁作用,平時搭乘時就會產生影響,尖峰時間影響越大……

媒體完全混用「地磁」、「磁場」和「量測到的磁場」,在沒有搞清楚狀況的差異之下就「不慎」將原本冷門的科學議題推上了重要版面,造成各大媒體競相報導。除了驚悚的標題之外,更在標題和內文出現「創全球之先重大發現」、「是全球迄今唯一發表大眾運輸會造成地球磁場改變的重大發現」等托大的用詞,實在讓人無言。

「創全球之先重大發現」、「創全球先例」等托大的用詞幾乎每一則報導都有出現。圖/影音新聞截圖

為了釐清真相,解剖員更直接透過電訪向顏宏元教授求證。顏教授表示自 2013 年開始,研究團隊觀察到捷運可能影響地磁觀測數據後,2014 年便開始對此現象持續研究;與此同時,教授也不時會在課堂中與同學分享研究內容,顏教授猜測部分媒體也許因而得到風聲,所以常常向研究團隊追查研究進度,以期作為未來新聞報導的素材。

因此當有某一家媒體發布獨家新聞後,隔日早上許多其他媒體即迅速地聯絡到顏教授,並進行了影片和電話採訪。顏教授表示,當時他直接以「怎麼發現這個現象」,「這個現象會不會影響人體健康」為題進行說明,但由於採訪過程中人多嘴雜,不易清楚說明,「改變地球磁場」等浮誇字句均非教授所言,甚至根本不是訪談主軸。整體事件之後,顏教授也對於媒體斷章取義、誤解、妄下結論等狀況感到無奈。

解剖總結

綜上所述,這則新聞錯誤傳播與研究不符的科學訊息,並且混用科學專有名詞,誤解了專家的訪談內容,還使用了聳動的新聞報導標題,用看似專業的報導騙取民眾的信任,除了讓社會誤解科學的研究成果之外,更可能讓專業的科學家蒙受不白之冤。據此,本解剖室給予這次的系列報導以下評價(16 顆骷髏頭):

(策劃/寫作:陳儀珈、賴雁蓉、黃俊儒;科學專家:顏宏元)

The post 萬磁王再度降臨?!300 萬人跨年夜搭捷運就能改變地球磁場嗎? appeared first on PanSci 泛科學.

兩個爸爸沒有媽媽!世上第一隻孤雄生殖小鼠誕生

$
0
0

你知道嗎?最近有同性生殖的小鼠在科學家的手中誕生了。

學界其實一直探尋著:究竟同性的哺乳類能不能生殖、產下後代? 2018 年中國科學院的科學家在國際期刊《Cell Stem Cell》上發表了一個腦洞大開的研究,成功讓實驗鼠完成同性生殖[1]

同性生殖很奇怪?自然界裡其實很常見

有沒有可能不需要和異性一起產生後代?圖/By FotoshopTofs @Pixabay

事實上,同性生殖在其他物種並非罕見的現象,很多爬蟲類、鳥類、鯊魚以及一些昆蟲和植物都有同性生殖的現象。

這些同性生殖的後代通常來自雌體的細胞,因此有另一個大家較為熟悉的名詞:「孤雌生殖」,也就是子代的兩套染色體都來自母親。然而孤雌生殖並不存在於哺乳類中;與之相對的「孤雄生殖」更是聞所未聞,僅在一種斑馬魚上發現過而已[2]

唯一發現的孤雄生殖斑馬魚。
圖/Production of androgenetic zebrafish

幾乎所有動物都有孤雌生殖的能力,唯有哺乳類在演化的過程中淘汰了這項能力,這背後藏有什麼樣的秘密?科學家能藉由實驗和推理越過這道演化上的鴻溝嗎?

2004 年,日本科學家 Kono 曾經在未成熟的卵中消除兩個「基因印記」,而後結合另一個卵;這個由兩個卵所組合而成的胚胎意外地培育成功,使得科學家成功得到了孤雌小鼠[3]。這是人類第一次創造出孤雌生殖的哺乳類,只不過這些小鼠在出生不久之後就死亡。

基因的識別戳章:基因印記

什麼是基因印記呢?學過基礎生物的你,一定知道孟德爾的豌豆以及等位基因理論:孩子各從父母得到一半的基因,如果兩個基因都是隱性會表現出隱性的樣子;反之,只要父母有一方是顯性,孩子的表徵也會是顯性。

假如父母各有一個顯性和一個隱性的基因,根據孟德爾的等位基因理論,即使父母的表現出來都是顯性的,子代有四分之一的機率會表現出隱性的性狀,並不是隔壁老王的錯
圖/Biology Dictionary

然而並不是所有的基因都符合等位基因的理論;有些基因只需要來自父親,有些則只需要來自母親,因此細胞會將不需要的那一方以「甲基化」的方式讓基因不表現,這個甲基化的現象就稱為基因印記 (Genomic imprinting)。

簡單來說,基因印記就像個戳章,如果來自爸爸的基因蓋上這個戳章,細胞就知道爸爸這邊的基因不必表現;相對的,孩子由母親得到的基因就必須是正常的,子代才會正常。反之亦然,如果卵子上的基因有印記,精子的基因就必須是正常的,否則孩子的基因會有缺陷。

知道基因印記背後的原理之後,就不難理解為何 Kono 的團隊要先消除基因印記;因為來自同樣母親的基因會有相同的印記,如果不將此印記剔除的話,要創造出來的孤雌小鼠基因就會有缺陷。換句話說,剔除基因印記後,可以讓卵細胞的基因表現看起來「比較不那麼雌性」。

刪兩個還不夠,三個才能成功

理論很美好,現實很殘酷,在一開始的實驗中,雖然已經自卵細胞消除了基因印記,生出的小鼠卻還是有缺陷。爾後,中科院的學者們試著以單倍體胚胎幹細胞 ( haploid embryonic stem cell, haESC )[註] 重新挑戰這項研究。

他們在母源單倍體胚胎幹細胞中消除了 Kono 研究發現的兩個基因印記,之後將另一顆卵子注入,最後出生的孤雌小鼠的確有缺陷。不過這段旅程也並非無所獲,他們在過程中發現了一個表現異常的基因印記:Rasgrf1。

最後的嘗試,他們同時刪除單倍體胚胎幹細胞了包含 Rasgrf1 的三個基因印記,得到的結果證實是 Rasgrf1 造成了孤雌小鼠的缺陷。在刪除了三個基因印記之後,出生的孤雌小鼠便與正常的小鼠無異。人類第一次獲得了在各方面都正常、甚至有生育能力的孤雌生物。

消除基因印記後……哺乳類首見孤雄生殖成功了!

成功創造出孤雌生殖小鼠後,接下來研究團隊比較了父源與母源單倍體胚胎幹細胞的差異,發現他們在發育過程都會出現相近的甲基化模式,因此推測孤雄小鼠是有潛力被創造出來的。

研究人員在父源單倍體胚胎幹細胞篩選出了七個基因印記並將其去除,再將之與另一顆精子結合。最後這些細胞成功發育成活的孤雄小鼠,只是都在出生後兩天內死亡。

原先在動物界極為少見的孤雄生物,居然可以在哺乳類被建立出來!只是不難想像,如果要培育出正常發育且具生育能力的孤雄小鼠,還需要相當多的實驗和努力。

生物科技已經有如科幻電影一般的境界了,僅僅利用胚胎幹細胞和基因剪輯的技術,就可以破解哺乳類的生育原則。科技能解決和觸及的領域無遠弗屆,我們也不妨想想:這些孤雄或孤雌的小鼠後代是否合乎實驗倫理規範?該怎麼讓孤雌孤雄小鼠有正常的生理機能?這項技術有機會應用在其他物種身上嗎?

這個研究已經在學界產生一股旋風,各個研究機構的相關人員想必已經開始策劃實驗了,身為讀者的我們就拭目以待吧!

  • [註]:幹細胞裡的楊過:單倍體胚胎幹細胞 (haploid embryonic stem cell, haESC) 就如同一般胚胎幹細胞,有分裂分化的能力。不過單倍體胚胎幹細胞的特點在於:每個細胞都只有單套染色體!獨臂的楊過仍可施展黯然銷魂掌,單套染色體的胚胎幹細胞也有其優點:有利於研究一些未知的隱性基因突變。

參考資料:

  1. Cell Stem Cell. Generation of Bimaternal and Bipaternal Mice from Hypomethylated Haploid ESCs with Imprinting Region Deletions. 2018 Oct;11. (23): 1-12。
  2.  Genetics. Production of androgenetic zebrafish (Danio rerio). 1996 Apr. (4): 1265-76.
  3.  Nature. Birth of parthenogenetic mice that can develop to adulthood. 2004 Apr;22. (428): 860-864。

The post 兩個爸爸沒有媽媽!世上第一隻孤雄生殖小鼠誕生 appeared first on PanSci 泛科學.


當我們同在一起創作,智慧系統與人的互動機制如何設計才能讓人快樂無比?

$
0
0

假如在不久的將來,我們有可能與 AI 共同創作,像是共同寫作、編劇、編曲、拍攝影片、繪畫等;那麼在這共創的情境下,假使 AI 系統提供人類不同詳細程度的說明時,人類的共創體驗會如何受影響?而在 AI 與人合作的過程中,誰該當領導者來主導整個合作?人類會想要主動引導嗎?假使 AI 成為發號施令的角色、而人類只能配合時,又會帶來什麼體驗?

  • 註:本文提及的「AI系統」指的是在繪畫這個特定任務上,系統根據輸入的資訊,利用統計方法、深度學習的模型進行辨識和預測,進而輸出相對應資訊的系統。為求方便溝通,在以下的文中以「AI系統」或「AI」簡略稱呼這個具備基礎推理、學習能力的繪畫系統。

近年來越來越多關於人工智慧是否會取代工作、哪些工作會被取代等主題的討論。當各式各樣的 AI 系統日漸普及在你我生活中,食、衣、住、行、育、樂各層面都有 AI 參與,使用者與 AI 系統的互動該如何設計,是人機互動領域持續探索的主題之一。

AI 除了協助人類完成重複性高的例行事務,也能輔助人類跨越專家與新手之間的門檻。像 Google 推出的AutoDraw,能夠讓非繪畫專家簡單畫出基本物件輪廓後,自動幫使用者補齊畫面上可能適合的要素,讓繪畫新手也能開啟創作的第一步;MIT CSAILab 也推出了以 AI 為基礎,根據圖像意義去背的圖像編輯工具Wix 這個線上網頁建置服務也在網頁設計的功能結合 AI 的服務,幫助使用者在沒有太多網頁設計或程式開發的技術前提下,製作出具有特色的個人網站。

  • AI與你協作圖像編輯。

設計 AI 服務合作時,有哪些潛在問題需要注意?

這些 AI 的應用,讓人類有更多跟 AI 一起合作、甚至是共同創作的機會。那麼,當人跟具有 AI 的服務合作時,有什麼潛在問題需要注意?身為提供AI服務的設計者,該留意哪些事?另一方面,身為與 AI 系統互動的使用者能以什麼角度看待自己與 AI 的關係?本文主要介紹由韓國首爾大學研究團隊在 CHI18 發表的研究,便嘗試了解當人與 AI 一起創作的時候,在這互動過程中可能出現哪些潛在問題?人有什麼體驗?並根據研究發現提出未來人工智慧系統設計上需考量的方向。

為回答這個研究問題,研究團隊們以「繪畫」當作了解「人與 AI 共創」的實驗任務,並設計了一個具備 AI 功能的繪畫軟體(以下簡稱AI),這個系統包含幾個功能:自動補齊使用者畫到一半的內容、自動畫出跟先前類似的物件、根據先前被畫出的物件自動產出相對應的新物件、提醒使用者畫布中太過空白的區塊、根據使用者指定的顏色自動上色。這些 AI 繪圖功能主要來自於 Google Sketch-RNN [2] 以及團隊自行開發的演算法。

接著,研究者設計了五種不同互動情境:

  1. 人擔任主導者,AI 繪圖軟體提供詳細的系統說明;
  2. 人擔任主導者,但是 AI 繪圖軟體提供簡略的系統說明;
  3. 人擔任輔助者,而 AI 繪圖軟體提供詳細的系統說明;
  4. 人擔任輔助者,而 AI 繪圖軟體提供簡略的系統說明;
  5. 使用者沒有與 AI 互動,獨自完成繪畫任務。

研究團隊邀請了 30 位使用者輪流擔任主導者與輔助者,先後在五個實驗情境中完成指定的繪圖任務,同時他們也利用放聲思考法,亦即在繪畫過程中要把自己腦中所想的內容講出來,以便提供研究分析資料

研究者們根據問卷蒐集了使用者在五種情境下自評的軟體使用性、互動體驗、訪談內容,以及放聲思考的內容,分析、整理出以下幾個發現

  1. 使用者認為跟 AI 共創的過程是有趣且較有效率的;
  2. 使用者偏好 AI 提供詳細的系統說明;
  3. 使用者在合作過程中想擁有主導權。

AI 給予即時創作靈感有效,但人容易缺乏掌控感

當使用者跟 AI 一起創作時,使用者認為有 AI 輔助的情況下使得過程更加有趣與有效率。使用者表示當他們停頓時,AI 會很快建議他們可以畫什麼內容,AI 有時候也會畫出讓使用者意想不到的內容,讓他們感到驚艷;而當 AI 指出畫布上有哪些地方留白太多時,使用者也提到這可以迫使他們去思考應該增加什麼內容來豐富作品;也有人指出和 AI 一起畫畫就像跟另一個人一起畫畫一樣,這讓他畫出自己獨自無法畫出的內容。

然而另一方面,使用者認為在沒有 AI 介入的情況下,整個繪畫過程是較能預期、容易理解且能自己掌控,例如當 AI 畫出一個像是電腦剪貼出來的圖形時,如果跟本來手繪的畫風不一致,使用者便覺得畫面不協調;另外,當 AI 畫得比人好的時候,使用者也會覺得自己廢廢的,心想如果整幅畫都由 AI 自己完成說不定畫面會更好看 (。ŏ_ŏ)

對多數人來說,如果失去掌握感很容易挫折。圖/pixabay

使用者偏好詳細說明建議,粗略說明讓人迷惑

而當 AI 提供詳細說明,告訴使用者為什麼它會提出這些建議、為什麼會有這些系統行為時,相較於提供粗略說明的情況下,使用者認為有詳細說明的互動是較有效率、溝通品質較好、較容易理解、也更在自己掌控之中的。詳細的指示內容讓使用者覺得自己更了解系統如何運作的,並且覺得自己好像是在跟一個有智慧的人互動、溝通。

有使用者提到在接收到詳細說明的情況下,他們喜歡 AI 建議下一步可以怎麼做、AI 的指示會讓他們覺得自己在適當的方向上創作,也進而對當前的創作過程更有信心;然而在接收粗略說明的情況下,使用者表示不明白系統的某些指示到底是希望自己做什麼事;而當使用者看到 AI 很智慧地自動補齊自己畫到一半的內容時,也會想知道系統究竟是根據哪些線索來作畫。另一方面,當 AI 給出的指令是些空洞無意義的話時,使用者會覺得反感,例如有人提到當自己不是很滿意目前的畫作時,這時候 AI 竟自動回覆一句:「畫得可真好!」,這位使用者頓時覺得自己被 AI 嘲諷……(´_ゝ`)

使用者不喜歡成為 AI 的輔助者

分析結果發現,使用者並不喜歡自己成為 AI 的輔助者──人們認為自己才是決定該畫什麼的角色。當使用者擔任輔助者角色與 AI 共同繪畫時,他們表示當被 AI 告知要在某個區塊上色時,當下有種被冒犯的感覺,覺得這種雜事應該是由電腦做而不是人要做的;也不喜歡這種被 AI 當成工具人指使的感覺,這讓他們覺得只是在回應 AI 的指示,根本不算是「共創」;並且也認為 AI 給予指示時應該要有禮貌,而不該只是叫他照著做;而當 AI 提出一個使用者不明白的要求時,他們說不知道系統到底想搞什麼,但自己對這種情況也無能為力,他們沒有任何協商空間來改變系統做出的決定,所以有些人乾脆直接忽略 AI 的指示,或是希望未來如果還有類似情況出現,自己能有和 AI 協商的空間。

設計智慧系統互動機制的三個訣竅:引發好奇心、保持透明度、讓人維持掌控感

透過讓使用者跟 AI 一起畫畫的研究,我們初步知道了當人和 AI 共同進行創作時,可能需要注意的幾個面向,那麼這些發現對未來 AI 系統設計能有什麼啟發?

透過與 AI 的互動引起人的好奇心與創造力

在進行需要創造力的活動時,AI 產生讓人出其不意的內容時會讓人感到新奇,因此在創作時若能夠讓創作者在與AI 互動過程中由 AI 提供「適度」的隨機性,也許能幫助創作者進行聯想,進而激發更多創造力;不過有一點需要留意的是,「風格」在創作過程中對創作者與欣賞者而言也是個重要的因素,當未來 AI 跟人共創成為可能時,如何避免 AI  突然拋出風格迥異的內容是其中一個需要考量的設計方向。

讓AI的運作保持適度的透明

當 AI 提供詳細的運作機制讓使用者了解時,例如向使用者解釋系統是根據什麼資訊推薦某個創作素材、說明為什麼系統能判斷人畫到一半的物件等,使用者會感覺自己比較能預測及掌控系統行為、覺得自己比較能夠理解系統運作,這些都會提升人與智慧系統互動時的體驗,特別是在運用創造力的任務上,詳細的系統說明能讓創作者感覺自己是在跟另一個「人」共同創作,而當系統提供適當的回應時,也可能增進創作者的自信;不過接下來要面對的挑戰之一在於讓 AI 能夠「見機行事」,而非隨機給出模板式的回應,才能避免創作者在這共創過程中產生負面體驗。

控制權掌握在人的手中

從實驗的結果可以知道,無論使用者被指定為主導者或輔助者,人都期望自己在跟 AI 互動時,最終決定權在自己身上,而人似乎也預設了自己跟 AI 各自需要扮演什麼角色,像是重複性高的事該由 AI 處理、人則是處理架構的問題等。因此,當我們在設計人與智慧系統的互動時,也可以思考要如何才能夠讓使用者感受到自己對科技物擁有主控權,而非被科技物控制。

 

當人與 AI 系統互動時,智慧系統需要提供多少程度的說明讓使用者明白系統背後的運作,一直是人機互動與人工智慧研究領域在意的研究主題之一。AI 演算法對末端使用者來說經常是一個黑盒子,像是當我們在和聊天機器人對話時,經常不清楚系統到底是根據哪些資訊、透過哪些方式回應我們這些話;又或是當我們在瀏覽社群媒體時,不清楚推薦系統到底向我們蒐集了哪些資料、又如何判斷該推薦給我們什麼文章或影片;除了末端使用者需要知道系統的基本運作之外,對開發者而言,AI 演算法成為黑盒子也會使得開發者或設計者無從找尋系統出錯的來源,或是無法控制 AI 為什麼會有意料之外的輸出。

在讀了這篇研究後,身為系統開發者的工程師或設計師們可以一起思考該如何拿捏系統「透明度」的設定;而身為與越來越有智慧的系統互動的我們也可以想想:有哪些事情在 AI 的陪同之下我們可能會做得更好?我們會想跟 AI 在什麼層面進行共同創作?AI 要具備什麼能力才能讓我們覺得跟它合作的體驗是正向的?

備註

  • 本篇是擷取原始論文中部分內容搭配筆者想分享的概念所架構而成,部分研究細節與討論並未完全呈現,鼓勵有興趣的讀者直接參考原文深入了解細節。本篇目的在於讓讀者了解人機互動領域中如何切入人工智慧的主題,並提出未來 AI 系統的設計指引。內文並非逐字翻譯,亦不能取代原文

本文轉載自《人機共生你我它》,原文為《除了讓人工智慧更加智慧,還缺了什麼?》。
「人機共生你我它」由一群致力於人機互動研究(HCI, Human-Computer Interaction)的研究者所創立,我們定期發表人機互動相關文章,讓更多讀者了解這門結合資工、心理、設計等學科的跨領域知識以及它在實務層面的應用。

延伸閱讀:

Reference:

  1. Oh, C., Song, J., Choi, J., Kim, S., Lee, S., & Suh, B. (2018, April). I Lead, You Help but Only with Enough Details: Understanding User Experience of Co-Creation with Artificial Intelligence. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems (p. 649). ACM.
  2. David Ha and Douglas Eck. 2017. A Neural Representation of Sketch Drawings. arXiv preprint arXiv:1704.03477 (2017).

The post 當我們同在一起創作,智慧系統與人的互動機制如何設計才能讓人快樂無比? appeared first on PanSci 泛科學.

【GENE思書軒】茶杯中天天上演的風暴

$
0
0

前陣子本校有學生在臉書上質疑為何實驗課中沒見到老師,很多學長姐吐槽他找死,結果老師出現了還兩度留言保證會每次實驗課都在,學長姐樂翻了嘲笑他等著中午進去實驗室,半夜才被放出來吧⋯⋯

只有一學分的物理實驗室,聽說有些系還真的是常常中午進去,半夜才被放出來。在第一堂實驗課的基本測量,通常就是最恐怖的震撼教育,我們以為不過是拿尺去量一量,結果卻被誤差的估算等搞得七葷八素。

圖/giphy

我就是個物理不太行的理科生,當年的物理課都不知是怎麼混過的。 可能是那些記憶太可怕了,自動在腦海中被抹除。可是,只要是個科學研究工作者,對世界的各種現象或多或少還是有許多好奇,只要這些好奇心沒被複雜的數學公式馬上擊垮。

物理學家重用數學來理解物理世界,固然有其必要性,因為那是種高度抽象、高度簡潔的方式,也是物理學研究必備的。可是,身為普羅大眾,理解一些物理世界,數學能力不該是充分且必要的條件。

再也不用怕聽不懂物理了!

這本《茶杯裡的風暴:丟掉公式,從一杯茶開始看見科學的巧妙與奧祕》(Storm in a Teacup: The Physics of Everyday Life) 就是一位長期投身科普教育的大學教師海倫‧齊爾斯基 (Helen Czerski) 用人話來講解我們日常生活中最顯而易見的各種現象背後的物理學原理和意義。齊爾斯基在倫敦大學學院任教,專門研究在開闊大洋中、位於碎波下的氣泡,時常參與、主持 BBC 的電視節目。

在《茶杯裡的風暴》,不會看到黑洞、蟲洞、量子重力、重力波、相對論等等超酷炫的名詞,應該說,這本書幾乎沒有難澀的專有名詞,也沒有文言文,都是用白話文來介紹生活中隨處可見的現象。我每天早餐必喝一杯厚奶茶,在茶杯中天天上演書中提到的風暴。

茶杯裡的風暴》其實也談了原本難懂或離我們生活較遙遠的事物,例如太空望遠鏡、太空火箭、宇宙過熱現象、電磁學等等,可是齊爾斯基極為擅長善用比喻,她用咖啡漬、爆米花、茶杯、烤麵包機、生熟雞蛋、藍莓果醬、蕃茄醬、鴨子不怕冰冷的雙腳、披薩的餅皮等等來顯露出這些現象和原理之間的關聯。她在每一章都用一個生活的小故事開始開講,激發我們的好奇心和求知慾。

《茶杯裡的風暴》每一章都用一個生活的小故事開始開講,激發我們的好奇心和求知慾。
圖/pixabay

英國大詩人濟慈 (John Keats,1795-1821) 以為牛頓 (Sir Isaac Newton,1643-1727) 的科學破壞了彩虹的美麗與詩意。其實,科學並非只有冷冰冰的公式和定理而已,還能發掘出大自然深刻而理性的美感,以及充滿探索未知而激發出更多無窮的想像力。《茶杯裡的風暴》就以身作則地帶領我們,在身旁習以為常的小事物裡遨遊物理的世界,讓平凡生活增添了許多奇妙的樂趣。

本文原刊登於 The Sky of Gene

The post 【GENE思書軒】茶杯中天天上演的風暴 appeared first on PanSci 泛科學.

【GENE思書軒】天才艾倫‧圖靈的一生

$
0
0

電影裡要描寫科學家,就讓他們穿白色實驗衣在實驗室和辦公室走來走去。可是現實中,如果我平時沒事就這麼做,同事和學生只會想說我是不是很後悔當初沒去唸醫科,然後忘了吃藥了 Orz

近年有不少描述科學家「真實」生活的電影或影集,如《模仿遊戲》(The Imitation Game)《愛的萬物論》(The Theory of Everything)《天才無限家》(The Man Who Knew Infinity)《關鍵少數》(Hidden Figures)《世紀天才》(Genius) 等等。

這些科學家的傳記能夠搬上大銀幕,當然是因為他們的故事非常戲劇化。即使是大部分諾貝爾獎得主的生平要搬上銀幕,大概只有他們在實驗室裡長時間玩弄不知名的儀器、長時間在辦公室裡讀文獻和打字、或者在課堂中上觀眾完全聽不懂的課⋯⋯

然而,人生的真實狀況有時間是比電影中還鬼扯,以致於編導都不敢照本宣科地搬上大銀幕,以免被影評奚落是亂灑狗血;至少,扣掉電影中那些為劇情發展而弄出的橋段,這些了不起的科學家,他們在人生中和科學上的豐富程度,是電影或影集都難以刻畫的,況且電影常為了製造張力討好觀眾而虛構重要劇情。

誰是艾倫‧圖靈 ?

如果沒有《模仿遊戲》的主角艾倫‧圖靈 (Alan Turing,1912-1954),電腦也應該還是會誕生,只是不知會晚多久。如果沒有他在第二次世界大戰期間加入布萊切利莊園 (Bletchley Park) 的團隊,破解了德國的密碼,二戰應該仍會結束,但也不知會晚多久,還會有多少寶貴的生命犠牲。如果他沒有因同性戀問題事發,受迫在當時英國法令規定下,被化學閹割後不久在身旁留下一顆毒蘋果自殺身亡,今天的人工智慧可能又會提前多早誕生?

他也提出著名的圖靈測試(Turing test,又譯圖靈試驗),是於 1950 年提出的一個關於判斷機器是否能夠思考的著名試驗,測試某機器是否能表現出與人等價或無法區分的智能。

圖靈測試內容是,如果一個人(代號 C)使用測試對象皆理解的語言去詢問兩個他不能看見的對象任意一串問題。對象為:一個是正常思維的人(代號 B)、一個是機器(代號 A)。如果經過若干詢問以後,C 不能得出實質的區別來分辨 A 與 B 的不同,則此機器 A 通過圖靈測試。

如此可見,圖靈是超越他時代的天才,不僅是位科學家也是位思想家,更是位真誠地面對自己的人,他的一生有許許多多值得我們深思的創見!

要認識艾倫‧圖靈這位真正了不起的科學家,一位讓我們對人類心靈和智能深入思考的科學家,影響力甚至超越科學,也給了哲學、藝術和文學等領域不少啟發,他那偉大又悲劇的偉人戲劇化的一生,《艾倫‧圖靈傳》(Alan Turing: The Enigma) 是最權威的傳記,沒有之一。

圖靈的父親朱利斯·麥席森·圖靈 (Julius Mathison Turing) 是一名英屬印度的公務員。1911 年,圖靈的母親在印度的懷了孕。因為他們希望艾倫在英國出生,所以回到倫敦,住在帕丁頓 (Paddington),並在那裡生下了艾倫。

父親的公務員委任使他在艾倫小時候經常來往於英倫和印度。由於擔心印度的氣候不利於兒童成長,他便把家庭留在英倫與朋友同住。圖靈很小的時候就表現出他的天才,後來就更加顯著。1931 年,圖靈考入劍橋大學國王學院。1934 年他以優異成績畢業。1935 年因為一篇有關中心極限定理的論文當選為國王學院院士,畢業後到美國普林斯頓大學攻讀博士學位,花了僅僅兩年就大獲得學位。

1939 年圖靈被英國皇家海軍招聘,並在英國軍情六處監督下從事對德國機密軍事密碼的破譯工作。兩年後他的小組成功破譯了德國的密碼系統 Enigma,從而使得軍情六處對德國的軍事指揮和計劃了如指掌。但是軍情六處以機密為由隱瞞了圖靈小組的存在和成就,將其所得情報據為己有。據說,圖靈小組的傑出工作,使得盟軍提前至少兩年戰勝了納粹德軍。

圖靈提出的理論是劃時代和極具開創性的,發明了電腦科學和電腦的許多概念,啟發了後世的許多研究。我算是外行,有不少概念似懂非懂,可是電腦科學的真正高手,往往被圖靈提出的許多概念折服!

艾倫‧圖靈 (Alan Turing,1912-1954)。
圖/wekipedia

天才圖靈不平順的人生

《艾倫‧圖靈傳》描繪出生動的圖靈,他還是一位世界級的長跑運動員。他的馬拉松最好成績是 2 小時 46 分 3 秒,比 1948 年奧林匹克運動會金牌成績慢 11 分鐘,要不是因為受傷,他可能真的參加了 1948 年奧林匹克運動會。

《艾倫‧圖靈傳》由的圖靈不造作,他沒有刻意隱瞞自己的性向,但圖靈因同性戀傾向而遭到的迫害使得他的職業生涯盡毀。1952 年,他和一名年輕的曼徹斯特男子交好,在那位同性伴侶協同一名同謀一起闖進圖靈的房子行竊時,英國警方的調查結果使得他被控以「明顯的猥褻和性顛倒行為」罪。《艾倫‧圖靈傳》指出,他沒有申辯,他並不認為自己有錯,並被定罪。

儘管他在科學上有極為卓越的貢獻,但還是在著名的公審訂罪後,被給予了兩個選擇:坐牢或雌激素注射「療法」(即化學閹割)。他最後選擇了雌激素注射,並持續一年。在這段時間裡,藥物產生了包括乳房不斷發育的副作用,也使原本熱愛體育運動的圖靈在身心上受到極大傷害。

1954 年,圖靈因食用浸過氰化物溶液的蘋果而死亡。很多人相信他的死是有意的,法官並判決他的死是自殺。但是他的母親極力爭辯他的死是意外,因為他不小心在實驗室里堆放了很多化學物品。

直到 2013 年 12 月 24 日,英國司法大臣才宣布英國女王伊莉莎白二世赦免 1952 年因同性戀行為被定罪的艾倫·圖靈。2015 年 2 月 23 日,圖靈的家人向英國首相府邸發出了一份超過 50 萬人簽名的請願書,要求英國政府赦免和圖靈一樣因同性戀而獲罪的人。2017 年 1 月 31 日,艾倫·圖靈法案生效,約近五萬位因同性戀定罪者被赦免。

電腦界諾貝爾獎:圖靈獎

為了紀念圖靈的偉大貢獻,電腦協會 (Association of Computing Machinery,ACM) 於 1966 年設立圖靈獎 (ACM A.M. Turing Award),專門獎勵對電腦事業作出重要貢獻的個人。設立目的之一是紀念這位現代電腦科學的奠基者。獲獎者必須是在電腦領域具有持久而重大的先進性的技術貢獻。大多數獲獎者是電腦科學家。是電腦界最負盛名的獎項,有「電腦界諾貝爾獎」之稱。

《模仿遊戲》的娛樂性多過知識性,如果你想知道一位劃世紀的天才在想什麼,問了麼了不起的問題,提出了什麼里程碑式的概念,可能還是好好讀讀《艾倫‧圖靈傳》才最實際!

本文原刊登於 The Sky of Gene

The post 【GENE思書軒】天才艾倫‧圖靈的一生 appeared first on PanSci 泛科學.

2018《Science》年度十大科學突破

$
0
0
  • 本文由旻諭、馨香共同寫作

每年《Science》的編輯和記者們都會選出「年度十大科學突破」,再讓大夥們一起投票選出當年度最最最重大的科學研究。當然,今年也不例外!廢話不多說,就讓我們直接從最受歡迎的票選冠軍談起吧!

關鍵技術「三部曲」:追蹤受精卵裡的每、一、個細胞

你是否曾經疑惑過:人體的器官明明都是從同一顆受精卵不斷分裂而來,為甚麼卻可以長出心臟、肺臟、頭腦、手腳等等不同的器官跟組織?

其實這個問題也困擾生物學家很久了,從古希臘時代的醫生希波克拉底開始,生物學家一直很想了解:人類如何從單一細胞,發育成一個具有不同器官和數十億細胞的個體?

現在,出現了新的技術,讓我們很可能即將解開這個秘密!只要透過結合三個關鍵技術(合稱為 Single-cell RNA-seq),就能以「單一細胞」的超細微尺度,來追蹤每個細胞如何分化。這個技術組合可以大大促進基礎研究和藥物研究的發展,因此榮登 2018 年度最重大的科學突破!

如何進行呢?

  1. 從活體中分離出上千個完整細胞
  2. 為每一個細胞進行基因定序,得到每個細胞的基因表達情形
  3. 以電腦模擬或標籤 (labeling) 細胞的方式,重建細胞之間的時間與空間關係

透過結合三個關鍵技術(合稱為 Single-cell RNA-seq),就能以「單一細胞」的超細微尺度,來追蹤每個細胞如何分化。圖/NIH Image Gallery @flickr

從上千個細胞的基因定序結果,研究人員可以一窺個別細胞在特定時間點有製造哪些 RNA ,對應到細胞的最終分化型態,藉以了解對某種細胞而言,哪些基因表現是重要的。如此一來,我們可以便能了解器官與組織的發育過程,也能研究畸形或是特定疾病的發生,究竟是在發育過程的哪一步出了差錯。

來自遙遠星系的好消息:成功定位微中子

電磁波、重力波等訊號,就像是由遠~方捎來消息的信使,讓科學家得以理解億萬光年外的宇宙發生了什麼事。在今年,科學家首度成功定位出高能微中子的來源,讓微中子也加入了信使的行列。

位於南極冰川底下深約 1.5-2.5 公里處的「冰立方」(IceCube),是由 5160 個光感測器組成的微中子觀測站,總體積大約有一立方公里。2017 年 9 月,冰立方偵測到一顆撞擊冰分子的高能微中子,透過分析反推出微中子的入射方向,並即時向全球天文台發出通告。數天後,NASA 的費米伽瑪射線太空望遠鏡團隊指出,他們日前觀測到一顆正處於活耀期的耀變體 (blazar),其方位和冰立方指出的高能微中子來源是相符的。

今年 7 月,數千位研究者共同發表了正式報告,確定此高能微中子就是來自這一顆距離地球 57 億光年遠、正在發出強光的耀變體。耀變體會製造伽瑪射線和微中子,也很有可能噴射如質子、氦原子核等其他高能粒子,這表示,每天轟炸地球的宇宙射線有可能就是來自那裡。

南極的「冰立方(IceCube)」微中子天文台。圖/截圖自 youtube

以電子束掃描,快速鑑定分子結構

以前,想要確認有機化合物分子結構,可能要花上個好幾天、好幾週,甚至好幾個月。不過,就在今年 10 月,剛好有兩個研究團隊同時發表論文,這個新的掃描方法只要花短短幾分鐘就能確定小型有機化合物分子結構!

過去幾十年來,科學家們都是用「X 射線晶體學」的方法來確認分子的結構:將一個個分子排排站形成一個 3D 晶體結構之後,以各種角度發射 X 射線,再從 X 射線繞射的結果來推估電子密度分布,最後依這個電子密度分布解讀判定分子結構。

過去我們都是用「X 射線晶體學」的方法來定義分子的結構。圖/By Thomas Splettstoesser @wikimedia commons

但要讓目標的物質(通常是蛋白質)形成足夠大的晶體並不是那麼容易的事,因此往往成為確認晶體結構最大的門檻。新方法以「電子束」取代 前述方法中的「X 射線」,對著 3D 結構的晶體發射電子束,追蹤每一個微小角度變化的電子束繞射結果,就能在幾分鐘內推敲出分子結構。而更重要的則是,這個新方法所需的晶體大小僅需舊方法的百萬分之一!

能夠確認分子結構,可以幫助科學家更了解該分子的特性,這對新藥合成、分子探針設計和疾病追蹤等都有很深遠的影響。

發現格陵蘭冰川下的巨大火山坑

今年十一月,科學家透過飛機雷達發現,在一萬三千年前,有顆小行星砸在格陵蘭島西北部的海華沙冰川 (Hiawatha Glacier) ,不僅立刻蒸發了岩石,還在北極上空發出衝擊波,產生一個寬 31 公里的隕石坑(幾乎跟臺北市一樣大)。

海華沙隕石坑 (Hiawatha crater) 長年深埋在一公里厚的冰川之下,是地球上最大的 25 個隕石坑之一。雖然這次隕石撞擊地球的影響程度,沒有 6600 萬年前造成恐龍滅絕那次來得可怕,但海華沙隕石坑的形成可能對全球氣候產生巨大影響:當小行星撞擊海華沙冰川,其產生的衝擊導致融水湧入北大西洋,可能阻礙了通往歐洲西北部的暖流,使得溫度驟降。這項發現或許可以解釋具爭議性的新仙女木事件 (Younger Dryas)。

#MeToo STEM 運動發燒!拒絕科學界性騷擾

「我們必須改變這個繼續允許性騷擾的文化和環境。」──美國國家醫學院主席 Victor Dzau @華盛頓「預防性騷擾工作坊」(2018.11)

一直以來,科學界的性騷擾一直被低估、忽視。不過在今年六月,美國國家科學院、工程和醫學院發布了一份關於科學、工程學和醫學領域女性遭性騷擾的關鍵報告。報告指出,超過 50% 的女教職員工以及 20%-50% 的學生皆曾遭受性騷擾,其中最常見的形式包含語言及非語言的性別歧視。

今年,幾個機構開始採取行動,如美國科學促進會 (AAAS) 在九月通過了一項相關政策,說明美國科學促進會研究員一旦被確認是性騷擾者,將遭到終生剝奪名譽。美國國家學院主席也在五月承諾研究人員若被確定為性騷擾者,將從榮譽排行榜中被剔除。

幾位評論家認為改變的速度可能還不夠快。美國田納西州范德比大學的神經科學家 BethAnn McLaughlin 在今年成立倡導組織 #metooSTEM,她特別提到美國衛生研究院 (NIH) 並沒有通過任何防治性騷擾的政策或採取任何相關行動。McLaughlin 以 46 秒的沉默作為公開談話的開場,她說:「每一秒代表美國衛生研究院提供資金、卻不過問研究員是否違反性擾法規的每一年。」(1 second for every year that NIH has given money to scientists and doctors and not asked if they have violated Title IX)

  • 註:Title IX 第九條是 1972 年美國禁止對學生進行性騷擾的法規。

超過 50% 的女教職員工以及 20%-50% 的學生皆曾遭受性騷擾,其中最常見的形式包含語言及非語言的性別歧視。圖/surdumihail @pixabay

發現擁有尼安德塔媽媽、丹尼索瓦爸爸的混血中二少女

2012 年,研究人員在西伯利亞的一個洞穴中找到一塊來自五萬多年前女性的骨頭碎片,並從 DNA 的比對結果發現,她居然是尼安德塔媽媽與丹尼索瓦爸爸愛的結晶!這件出土的化石被命名為「Denisova 11」,長度 2.47 公分,且從皮質骨密度推估她去世時至少已有 13 歲(因此叫她中二少女應該不過份(笑)。

這塊骨頭的基因定序結果,顯示其 X 染色體片段數目與體染色體一樣多,表示她是女生。(不論男女,一對體染色體都是兩條,而性染色體女性有兩條 X,男性只有一條 X。)且她的粒線體 DNA,也就是完全遺傳於母親的 DNA 是尼安德塔型,因此可以確定母親為尼安德塔人,爸爸為丹尼索瓦人。如果細看她的基因體,可以發現她爸其實本來就混了一些尼安德塔血統。

在這之前,研究人員知道尼安德特人、丹尼索瓦人和現代人類,偶爾會在冰河時代的歐洲和亞洲進行雜交,卻未曾確切發現過他們的後代。

這次的發現還帶來了另一個驚人的研究結果:尼媽的血緣比較接近克羅埃西亞的人類,而和同在丹尼索瓦洞穴的同類血緣比較疏遠,代表尼媽這群尼安德塔人時常遷徙於歐洲和西伯利亞兩地之間。這項研究成果可說是提供更多人類的演化史線索!

Credit: Thomas Higham/University of Oxford

偵破懸案新星:「鑑識系譜學」時代來臨

今年四月,美國警方宣布他們成功破解了史上最撲朔迷離的懸案──金州殺人案 (Golden State Killer) ,逮捕了其中一位嫌疑人。

  • 註:金州殺人案是 1970 到 1980 年代在加州的一系列強姦與謀殺案。

警方利用從犯罪現場蒐集到的 DNA 樣本,比對公共家譜 DNA 資料庫 (public genealogy DNA database),進而鎖定嫌疑人的家屬。執法單位已經利用「鑑識系譜學 (Forensic genealogy)」成功偵破其他 20 件懸案,讓鑑識系譜學成為當代功不可沒的鑑識界新星。

在金州殺人案中,當局使用一個叫「GEDMatch」的公共線上 DNA 資料庫。GEDMatch 資料庫是由兩位德克薩斯州和弗羅里達州的業餘系譜學家負責經營,每個人都可以提交自己的 DNA 定序結果到這個資料庫中。調查人員把從犯罪現場蒐集到的 DNA 樣本資訊,上傳到 GEDMatch 資料庫之後,便可找到嫌疑犯的遠房親戚,進而確定嫌疑犯身分。

藥品新招!RNAi 藥物在歐美獲准上市

核糖核酸干擾 (RNA interference, RNAi) 是一種可以讓基因沉默(或者說把某個基因「關掉」) 的技術。理論上透過這個技術,我們可以用 RNA 分子「關掉壞基因」、讓疾病不會發生。RNAi 這項技術早在 20 多年前就已經發明,但因為 RNA 分子實在太脆弱,很難讓 RNA 分子在抵達正確的組織前不受破壞,因此這項技術一直都無法實際應用於藥物設計。

直到 2008 年,這項難題終於有解方!美國麻薩諸塞州劍橋市的 Alnylam Pharmaceuticals 公司提出解套方法:利用一種「脂質奈米顆粒」來保護基因沉默 RNA (gene-silencing RNA),確保這段 RNA 可以成功被送達目的地。

Alnylam 設計出的 RNAi 藥物「Onpattro」可用來治療遺傳性轉甲狀腺素介導的類澱粉變性 (hereditary transthyretin-mediated amyloidosis, hATTR) 所引起的多發性神經病變 (polyneuropathy)。當「Onpattro」和脂質奈米顆粒結合,並運送至肝臟之後,可以阻止摺疊錯誤的蛋白質產生,也就能避免因為蛋白持累積形成的心臟與神經損傷。

RNAi 藥物「Onpattro」在今年 8 月通過美國食品和藥物管理局 (FDA) 和歐洲藥品管理局的批准,並以每年 45 萬美元的定價進入市場。

從分子痕跡一窺五億年前的世界:世上最早的動物在這裡!

今年科學家偵測到了來自超過五億年前生物的分子痕跡,讓人們對於地球早期的動物有更進一步的了解。

九月,位於坎培拉的澳洲國立大學研究團隊試圖從一些特殊的古老化石上找尋有機分子。這些來自俄羅斯白海懸崖邊的化石,沒有經過高溫高壓,且上面有一層看起來由有機物質構成薄膜。研究團隊猜想或許能找到未被摧殘的有機分子,因此他們取下化石上的薄膜、溶解它,並以氣相層析法和質譜法分析。研究結果發現,他們在埃迪卡拉紀(據今 5.42 億至 6.35 億年前)的狄更遜水母 (Dickinsonia) 化石中找到類膽固醇的分子,由於類膽固醇分子是動物的象徵,代表某些埃迪卡拉紀生物很可能是地球上最早的動物之一。

狄更遜水母 (Dickinsonia) 化石。圖/wikipedia

而在今年十月,另一個研究團隊從距今 6.6 億到6.35億年前的岩層裡,發現一種只有海綿動物會製造的分子。這代表「海綿」這種型態的動物,可能比目前已知最古老的化石還早出現了一億年。

維持細胞運作的秘訣:形成「液滴」

細胞內的眾多蛋白質、RNA 是如何在茫茫大海中找到彼此,在正確的時間與地點行使功能呢?近年來,科學家逐漸理解到,答案在於這些物質形成的「液滴」(liquid droplets) 結構。

自 2009 年開始,研究者發現很多蛋白質可以分離、聚集形成一顆顆液滴。此現象類似於「液-液相分離」(liquid-liquid phase separation),如同水和油是分離的,在水中的兩顆油滴碰在一起時,可自然融合為一。愈來愈多證據顯示,細胞內蛋白質、RNA 構成的液滴是生化反應的關鍵,組織了維持細胞運作的工作秩序。

2017 年有研究發現,細胞核中有液滴會幫助染色質濃縮,使位於該區域的基因無法表現。今年,有三篇刊登於《科學》期刊的論文指出,促進 DNA 轉錄為 RNA 的蛋白質,會聚集成液滴附著在 DNA 上。雖然運作的細節還有待繼續研究,然而 DNA 轉錄為 RNA 是製造新蛋白質的第一步,這些研究透露了液相分離在「如何選擇性地表達基因」這個生命的重要謎團扮演一定的角色。

  • 如果想了解更多,歡迎參閱《Science》精心製作的影片

參考資料:

The post 2018《Science》年度十大科學突破 appeared first on PanSci 泛科學.

綿密、柔韌、酥脆、耐嚼,食物的結構如何影響吃出來的口感?──《口感科學》

$
0
0

食物的結構與組織

食物的物理狀態和結構, 可以定義為和其物理組成( physical composition)有關的一切,也就是食物的不同部分和分子,從最小到最大各個層級是怎麼組合在一起。理論上,我們多少可以用量化的方式去觀察、測量和描述食物的結構。食物結構的一些層面是肉眼可以看到的,有些可以用顯微鏡觀察,還有些必須利用特殊儀器才能看到。無論物質是固體、液體、氣體、混合物或乳化物,都具有特定的重力、熱能和黏稠度等性質。

食物的「形狀」和「形態」這兩種物理性質,對於風味經驗中的視覺層面而言也極為重要。舉例來說,一顆又大又圓的蘋果、一粒小巧多瘤的核桃、一塊透明的果凍和一些可可粉的外觀,都會讓人心中產生不同的期待。

食物的外型會讓人們產生不同的期待。圖/pxhere

不管是物理狀態或結構,都是食物這個物質本身具備的性質,但質地卻是我們體驗食物之後的感覺,其中又以口感最為重要。雖然「質地」和「口感」兩詞一般使用時往往可以替換,但實際上,質地成了我們形容食物口感時最重要的概念。質地其實就是入口後感受和辨認出的食物結構。

我們通常是在將食物放入口中的時候,才會認知到它的結構,所以我們很容易搞混一些食物的結構和組織。吃義式冰淇淋的時候,要等咬嚼到小冰晶咔滋作響,我們才知道冰淇淋不是均質的。同理,吃果凍時要等果凍接觸上顎,並因為口中的溫度加熱而融化,我們才知道果凍柔軟易融;用餐時舌頭接觸到肉汁醬(gravy),我們才知道是濃稠有團塊或稀薄滑順。

要等咬嚼到小冰晶咔滋作響,我們才知道冰淇淋不是均質的。圖/pixabay

一個「質地」,各自表述?

質地的定義從前並不清楚一致,不同的科學家和食品產業界的專家各說各話。有些食品業界人士的用意,是希望使用的詞語,要有助於減少產品質地可能的缺陷或不一致。直到最近幾十年,科學界才逐漸發展出一套理性、精準的詞彙來描述食物的質地,包括「綿密」、「柔韌」、「硬脆」、「耐嚼」等描述用的詞語都有明確的定義,對於定量感官實驗的執行和食品工業的應用都有莫大助益。所達到的成效中,一方面在於描述質地時依據的不同參數的定義更加清晰,而在改良特定食物帶來的感官經驗方面,質地的運用也更形重要。

有些質地的參數只是機械式的性質,可以在實驗室裡以量化方式測量。有些參數則定義較不明確,最理想的是透過個人的感官印象以質性方式檢測。其中以口感最為重要,但視覺和聽覺也牽涉其中。由於食物入口之後會和唾液接觸,受到口腔中的溫度影響,並經過舌頭翻攪和牙齒咬嚼,其質地就會改變,一切就更形複雜。再者,進食時的機械式動作因人而異:嚼很快的人覺得硬脆的食物,由一個嚼很慢的人來吃,卻會覺得柔軟有彈性。

質地的感受會受口腔環境及咀嚼速度而改變。圖/wiki

很多種食物都處在不平衡的狀態,隨時會自動產生變化,而且變化速度時快時慢,這一點的重要性與食物本身可保存的特質有關。餐廳裡的菜餚都是現煮現吃,適用於現煮食物的,就不會適用於食用前可長久保存的量產加工食品。麵包等食物在質地上的變化,往往決定了該項加工食品的保存期限。

固態、液態和氣態,食物有多樣的相態

不管是生鮮食材或加工食品,是固體、液體或氣體,所有物質的結構都是與其物理狀態相關的一種靜態性質。但結構不會一直保持平衡,隨著時間過去,可能會從一種相態轉變成另一種相態,也可能因為受到外力而產生劇烈改變。舉例來說,糖的結晶原本是硬實的固體,可以放入嘴裡嚼碎;奶油是較軟的固體,含入嘴裡或放在長柄平底鍋裡加熱就會融化變形;果汁之類的液體會流動;食物散發出的氣體分子等氣味物質,被鼻子吸進之後會在鼻腔中盤旋向上。

未煮過的乾燥義大利麵(硬韌有彈性)和煮過變軟的義大利麵(可塑形)。圖/出版社提供

純物質平衡時的狀態判定起來相對容易,最典型的例子大概就是水了:凝結成固體時是冰,是液體時會流動,蒸發時是氣體。

固體多半呈結晶形式,例如食鹽的分子結構很有秩序,所有分子之間維持很穩定的關係。相對的,固體在分子層次的結構也可能混亂無序,可能是缺乏結晶體結構的非晶質(amorphous)物質,或是像焦糖這樣屬於玻璃態物質。非晶質物質的分子彼此之間的關係還算穩定,但經過長時間之後可能產生位移,會像極濃稠的液體一樣緩緩流動。玻璃態這樣的狀態看似怪異少見,但卻是影響多種食物的性質和口感的重要元素,舉凡巧克力、硬糖果、麵包脆皮、乾燥義大利麵、粉末和冷凍食品,都是玻璃態的食物。

液體的結構在分子層次很混亂。雖然分子彼此之間有部分相互結合,但多少可以自由移動。液體會流動,而像濃稠糖漿這樣的液體,流動的速度可能慢到不可思議。

氣體的分子彼此之間並未接觸,可以很自由地流動,甚至可以移動到很遠的地方,這就是為什麼有時候隔很遠也能聞到食物的味道。雖然沒有製成氣體狀態的加工食品,但食品本身卻可能含有大量氣體,包括打發鮮奶油(whipped cream)、蛋白霜(meringue)和烘焙食品。很多生鮮食材裡也含有大量空氣,例如蘋果全部體積裡有 25%是空氣。

顯微鏡下的蛋白霜。泛白的區域是氣泡,其中最大的直徑約 80 微米。圖/出版社提供

還有一種純物質稱為液態晶體(liquid crystal),它的結構屬於中間相(mesophase),也就是介於傳統的固體和液體之間的相態。很多種脂肪都可以形成液態晶體,常見的包括細胞壁裡的脂肪和巧克力裡的可可脂。

固液氣通通來,食物還能更複雜

食物裡只有一些是成分全都處於相同狀態,其中以液體居多,例如油、葡萄酒和啤酒,也有一些固體如純脂肪和焦糖形式的糖。但一般的食物飲料多半是由處於不同狀態的成分混合構成,狀態也就更為複雜。以沙拉醬、醬汁和啤酒泡沫為例,是由兩種不同狀態的成分構成,而奶油和黑巧克力的成分則分別處於三種不同狀態,聖代和牛奶巧克力含有四種不同狀態的成分, 至於白脫奶的成分則分屬五種不同狀態。

要知道不同的狀態如何在食物裡共存,可以舉幾個簡單的例子:魚肉裡有一滴一滴的魚油,固態的果凍裡會有水珠,還有乳化物裡混合了兩種液體。有一些食物的泡沫,是由氣體和液體混合組成的結構,狀態變化和固體相似。有些如優格和卡士達醬,則處於所謂的半固體狀態(semisolid state)。還有一些如膠凍等物質,雖然看起來不太像,但卻是貨真價實的固體。

還有一些如膠凍等物質,雖然看起來不太像,但卻是貨真價實的固體。。圖/pxhere

從「物理-化學」的觀點來看,食物的狀態和物理結構,基本上取決於本身成分以及融於或混合其他物質時接觸到的成分之間,發生的各種物理作用和分子間的作用力。這些作用力往往會互相競爭,而且在很大程度上受到其他因素左右。影響因素可能包括:可溶鹽類具有的帶電粒子,酸類和鹼基之間平衡決定的酸鹼度,或醣類和大的碳水化合物分子等高分子聚合物,與水和油裡對應之乳化劑的互溶性。有時候只要輕微的變動,就能造成一種成分結構的實質改變。例如,在煮菜的水裡加一點氯化鈣,就能讓蔬菜變得硬韌,在牛奶或奶油醬汁裡加檸檬汁會讓乳蛋白凝結成塊,在美乃滋裡加一點卵磷脂會讓油和醋的結合更穩定,而加入果膠有助於讓水果點心或果凍定形。

為了讓一些液體、溶液或混合物的口感更好,我們會想將它們變得質地更均勻、更黏稠或更硬實。傳統上有很多方法都可以運用,包括加入增稠劑、安定劑、乳化劑或膠凝劑,這些添加物可以改變食物或飲料的狀態、黏稠度以及與其他物質的互溶性。

 

本文摘自《口感科學: 由食物質地解讀大腦到舌尖的風味之源》,2018 年 11 月,大寫出版。

The post 綿密、柔韌、酥脆、耐嚼,食物的結構如何影響吃出來的口感?──《口感科學》 appeared first on PanSci 泛科學.

米粥麻糬麵包洋芋片,從黏膩到酥脆,澱粉風貌百變的秘密是什麼?──《口感科學》

$
0
0

來自植物的兩種澱粉

澱粉是廚房裡的經典材料,最常用的增稠劑之一。在植物體內,澱粉以碳水化合物的形式儲存能量,主要集中在種子和可食根部,例如稻米、小麥、玉米和馬鈴薯。在全人類攝入的總熱量中,澱粉佔了約 50%。澱粉由直鏈澱粉支鏈澱粉這兩種多醣類構成,兩者整齊緊密地聚結在一起,在植物組織裡形成小的澱粉粒。不同種類植物裡的澱粉粒大小和形狀各異,稻米裡的通常很小(直徑約 5 微米);而小麥裡的大些(20 微米);馬鈴薯的澱粉粒則更大(30∼50 微米)。

構成澱粉的兩種多醣:直鏈澱粉(左)和支鏈澱粉(右)。圖/出版社提供

澱粉粒外圍包覆著多種蛋白質,這些蛋白質可以和水結合,而它們的性質決定了澱粉的吸水力和抵抗酵素作用的能力。低溫環境中,蛋白質含量高的澱粉比含量較低的容易吸水。蛋白質與水結合之後,澱粉粒之間會相互黏結,澱粉就沒辦法再吸收更多水,這也就是為什麼蛋白質含量高的澱粉特別容易結塊。

電子顯微鏡下生馬鈴薯的澱粉(左)和煮熟馬鈴薯的澱粉(右)。生馬鈴薯裡的澱粉粒直徑通常介於 30~50 微米, 煮熟後會因吸水而崩解,形成澱粉膠。圖/出版社提供

直鏈支鏈兩樣情

直鏈澱粉和支鏈澱粉之間的關係,在不同的植物中會有些許不同。直鏈澱粉通常佔澱粉成分的 20∼25%,但也有可能高達 85%。例如豌豆澱粉就有約 60% 是直鏈澱粉。但也有些澱粉幾乎完全由支鏈澱粉構成,這類澱粉稱為糯性澱粉(waxy starch),可見於糯米、玉米、大麥和綠豆等作物。

就澱粉做為增稠劑的功能而言,這兩種多醣扮演很不同的角色。兩種多醣都是由聚結在一起的大量葡萄糖構成,直鏈澱粉裡的葡萄糖形成長鏈,而支鏈澱粉裡的葡萄糖則形成大型的枝狀網絡,單個支鏈澱粉分子可能包含多達一百萬個葡萄糖。澱粉糊化的時候,直鏈澱粉分子會和水結合,並形成交纏的結構,而結構很大的支鏈澱粉分子不會互相交纏,並會形成比較密實的結構。例如取自木薯根(cassava root)的木薯澱粉(tapioca)裡有 83% 是支鏈澱粉,就可以形成非常厚重黏稠的凝膠。

澱粉深藏不露的強大吸水力

整顆的澱粉粒不溶於冷水但能吸水,最多可以增加 30% 的水分含量。但只要溫度升高,澱粉的吸水力就會明顯改變。這就是為什麼將馬鈴薯煮熟後可以搗成泥,而穀物可以煮成稀粥。溫度在 55∼70℃(131∼158℉)時,澱粉粒會開始融化並大量吸水,要加熱到 100℃(212℉)才能完全破壞澱粉粒整齊有序的結構。

澱粉粒經加熱時,吸收水分形成凝膠的示意圖。圖/出版社提供

直鏈澱粉含量高的澱粉吸水能力較佳。例如富含直鏈澱粉的馬鈴薯澱粉與水結合的能力就十分驚人,所以增稠效果勝過支鏈澱粉比例較高的玉米澱粉。澱粉粒吸水以後,可以膨脹成原本在生馬鈴薯裡體積的一百倍大。馬鈴薯磨成泥之後,可以輕鬆吸收原本馬鈴薯三倍重的水,卻還能保持原本的形狀。

澱粉粒吸水的同時,一些直鏈澱粉分子會開始向外滲入液體,讓溶液變得更硬。這些長鏈分子會逐漸交纏在一起,並且半困住澱粉粒,讓它們變得比較難移動。上述兩種效應都會讓澱粉溶液變得更濃稠。

馬鈴薯磨成泥之後,可以輕鬆吸收原本馬鈴薯三倍重的水。圖/pixabay

糊化增稠,澱粉吸收水的效果

如果直鏈澱粉分子的濃度夠高,在溫度夠低時,直鏈澱粉分子形成的網絡就會變硬,且形成類似固體的凝膠,而澱粉粒溶化和吸收水的過程就稱為糊化。如果去攪拌凝膠,直鏈澱粉分子形成的網絡會破碎成片,澱粉粒也會開始碎裂,凝膠的黏稠度就會降低。冷卻之後的凝膠只會有部分重組,因為直鏈澱粉分子會再次形成網絡,但澱粉粒本身還是碎裂的。想想看在肉汁醬裡加澱粉讓它更濃稠,還有煮粥時攪拌再放涼的情況,就會發現這些效應其實再常見不過。

除了溫度和水分含量,澱粉的糊化也會受其他因素影響。如先前所述,澱粉粒維持聚結成團的能力高低,取決於包覆其外的蛋白質,而脂肪在糊化控制上也扮演一角。這對於製作油炒麵粉糊(roux)就很重要,因為等比例的麵粉和奶油會限制澱粉粒吸水的能力。

放置過久水分滲出,直鏈澱粉的回凝離水現象

澱粉形成的凝膠靜置冷卻一段時間之後,凝膠會變硬且具彈性,開始有水滲出。其中不溶於冷水的直鏈澱粉分子,就會開始重新組成類似晶體的結構,但本質上和原本澱粉粒的緊密結構是不同的,這個過程稱為回凝(retrogradation)。這也就是為什麼不應該將麵包放在冰箱冷藏的原因了。雖然大家常說這樣可以防止麵包變得乾而無味,但其實沒弄清楚問題癥結。麵包放久會變得索然無味,不是因為流失水分,而是因為澱粉回凝。直鏈澱粉分子結晶化的時候會排出水分,就可能造成水分滲出,在此情況下稱為離水現象。用澱粉增稠的肉汁醬也可能發生同樣的狀況:肉汁醬靜置放涼一段時間之後會變硬,裡頭的水分可能滲出並累積於肉汁醬表面。

麵包放久會變得索然無味,不是因為流失水分,而是因為澱粉回凝。圖/pxhere

含有澱粉的冷凍食品也可能發生回凝。結果就是將食品解凍之後,裡頭的汁液會滲出,例如造成派餡滲漏。如果採用支鏈澱粉含量高的澱粉,某種程度上是有可能預防回凝。即使支鏈澱粉回凝,也可以藉由加熱來回復,但直鏈澱粉回凝就是不可逆的。另外,含有一定量的脂肪或乳化劑的麵包糕點,可能也不會產生回凝,因為脂肪分子能防止澱粉結晶。

將充滿澱粉的凝膠體如麵團加以烘烤乾燥,可能會讓澱粉形成玻璃態,這也是為什麼新鮮現烤的麵包脆皮、餅乾和洋芋片會具有特殊的酥脆質地。

 

 

 

本文摘自《口感科學: 由食物質地解讀大腦到舌尖的風味之源》,2018 年 11 月,大寫出版。

The post 米粥麻糬麵包洋芋片,從黏膩到酥脆,澱粉風貌百變的秘密是什麼?──《口感科學》 appeared first on PanSci 泛科學.

被稱為「毒塑膠」的聚氯乙烯為什麼還在我們生活中?要怎麼避免它的危害?

$
0
0
  • 撰文/陳衍達

圖/analogicus @Pixabay, CC0

2016 年八月,全台灣的中小學即將開學之際,不到百人的雲林麥寮橋頭國小許厝分校,因為台塑公司在六輕工業區的聚氯乙烯製程中排放的氯乙烯1,迫使政府決議遷校,學生們只能在陌生的環境裡開始新的學期。

然而聚氯乙烯和氯乙烯是何方神聖?為什麼讓政府做出這項破天荒的決定?站在外頭的我們耳聞各種消息,卻總是霧裡看花,不如就讓我們用科學的角度來揭開聚氯乙烯的面紗吧!

萬用的聚氯乙烯塑膠

聚氯乙烯 (Poly vinyl chloride, 簡稱 PVC) 屬於塑膠的一種,是由氯乙烯單體 (Vinyl chloride monomer, 簡稱 VC VCM) 聚合而成的塑膠,在臺灣的塑膠分類編號是三號。

PVC算是最早被發現的塑膠之一,在十九世紀分別被法國化學家 H. V. Reagnalt 和德國的 G. E. Baumann 意外合成,這個時期的 PVC 製程都是利用陽光將氯乙烯催化聚合,成品都是堅硬的高純度 PVC,應用價值不高;不過到了第一次世界大戰後,美國百路馳公司 (B. F. Goodrich) 的工程師 W. Semon 把塑化劑摻入聚氯乙烯中,讓它變得易於加工,開啟了 PVC 的商業量產之路2

高純度的聚氯乙烯質地堅硬的特性,因此很常被用來製作水管。圖/FlickreviewR @Wikimedia, CC-BY-SA-2.0

純度較高的聚氯乙烯質地較堅硬,可以製作成水管、窗框以及信用卡和提款卡的本體等等;如果摻入一些塑化劑將其軟化,可以製成塑膠袋、人造皮、防水塗層、電線包材還有許多醫療耗材等等。

聚氯乙烯的回收標誌是三號,是由含有一個氯原子的氯乙烯分子聚合而成。 回收標誌圖/ dejavu-font @Wikimedia, CC0;化學式圖/@Wikimedia, CC0

在成份上,聚氯乙烯因為含有氯的成分,不像其他塑膠易燃,所以選用防火建材時如果需要使用到塑膠,也會優先考慮使用聚氯乙烯3PVC 的用途非常廣,基本上日常生活中的塑膠製品幾乎都可以用 PVC 製成。據世界衛生組織 WHO 1999 年的報告,聚氯乙烯佔了全世界 20% 的塑膠使用量4

聚氯乙烯,一生都是毒?

然而,當我們在網路上以聚氯乙烯為關鍵字下去搜尋時,會發現這麼萬用的材料負面資訊壓倒性佔多,甚至於在國際上有共識要逐步禁用 PVC

圖/截圖自google搜尋頁面

如果單就上述討論過的實用性來看,這是讓人相當難以理解的事。這一切的一切要回到1940年代開始的一系列研究,蘇聯的 S. R. Tribukh 等人 1949 年時在《衛生Гигиена и санитария*》期刊提出聚氯乙烯工廠勞工肝功能異常的狀況,同時期歐美各地也有類似的案例出現,便有許多研究團隊長期追蹤4,5。隨著致病證據越來越多,國際癌症研究署 IARC 1987 年將氯乙烯列為確定對人類有致癌性的物質第一級致癌物,並將聚氯乙烯列為尚不確定致癌性的物質第三級致癌物

但是前述的致癌性,最主要影響的對象其實是工廠從業人員,對其它的平民老百姓好像也沒什麼太大的健康危害,那為什麼我們還要把聚氯乙烯稱做「毒塑膠」呢?

其實從生產、應用到廢棄,聚氯乙烯製品都會釋出許多健康危害物質。生產的部分,主要原料氯乙烯是氣體,在製造過程中很容易洩漏,像一開始提到的許厝分校,就是 PVC 製程的受害者;除此之外,製程中還有許多副產物及廢水,例如台塑仁武廠的汙染事件,而氯乙烯的原料-─氯氣是從更上游的鹼氯工業而來,二十年前的柬埔寨汞污泥事件以及引發公害訴訟的台鹼安順廠汙染事件都是相關的污染案例。

PVC 製品中也含有許多為了改良產品性質而加入的塑化劑或者安定劑,這些物質遇到高溫環境很容易釋出到周遭環境中7,儘管有些廠商會聲明 PVC 無毒無害,但已有國內研究在保鮮膜瓶裝水等生活用品中驗出塑化劑。

而廢棄的 PVC 製品大多會進到焚化爐,但因為本身含有氯的成分,它在燃燒的過程中會產生同樣屬於第一級致癌物的多氯聯苯8。簡而言之,聚氯乙烯的一生中,有毒物質總是如影隨形。

該如何避免可能的危害?

而身為消費鏈最末端的我們又要如何避免自己受到聚氯乙烯的傷害呢?儘管各國政府已經逐步減用 PVC,根據歐洲塑膠生產商協會 PlasticsEurope 的報告,2016 年歐盟國家的塑膠生產量中,PVC 仍有百分之十的佔比,高居第三位,僅次於聚乙烯及聚丙烯9

圖/ArkkrapolA @Pixabay, CC0

消費者如果想進一步自保,得先了解塑膠製品除了聚丙烯 PP 以外基本上都不太耐熱,所以中心原則就是:不管有沒有標示,只要沒辦法確定是 PP,就不要讓塑膠製品接觸到超過五十度的高溫耐熱程度最差的寶特瓶 PET、聚氯乙烯 PVC 和聚乳酸 PLA 攝氏六十度時就會部分熱分解10,並減少包裝和油脂接觸油脂會加速添加劑溶出11

再來就是少用聚氯乙烯製品,只要看到用三號 PVC 回收標誌包裝的食物就少買,購買塑膠製品時也盡量避免成份是「PVC」、「聚氯乙烯」或是「聚氯乙烯樹脂」的商品。

至於工廠排放的污染如何解決?我們仍舊可以利用公民參與的方式影響政府的決策,讓相關的管控更透明有效,有興趣的人可以進一步瀏覽下面列出的網站,持續關注並將這些想法傳達給周遭的人,不要再讓更多人受害。

* Гигиена и санитария的發音是Gigiena i sanitariya,英文意思是Hygiene and Sanitation,兩個字在中文都是衛生的意思。

參考資料:

  1.     蘋果日報-【六輕污染悲歌】許厝國小遷校 許厝人:居民能遷去哪?
  2.     PVC.orgHistory
  3.     維基百科-聚氯乙烯
  4.     世界衛生組織-Environmental Health Criteria 215: Vinyl Chloride
  5.     Environmental Health PerspectivesJ. K. WagonerToxicity of Vinyl Chloride and Poly(vinyl chloride): A Critical Review
  6.     國際癌症研究署-致癌物質列表
  7.     泛科學-搞懂七大類塑膠使用法,才不會餐餐吃「塑」
  8.     Reviews of Environmental Contamination and ToxicologyT. Shibamoto等人〈Dioxin Formation from Waste Incineration
  9.     PlasticsEuropePlastics – the Facts 2017
  10. 衛福部食藥署-塑膠食品容器宣導網站
  11. 泛科學-用塑膠容器會吃到塑化劑?都是擴散作用搞的鬼!

The post 被稱為「毒塑膠」的聚氯乙烯為什麼還在我們生活中?要怎麼避免它的危害? appeared first on PanSci 泛科學.


【Gene 思書齋】植物與我

$
0
0

如果有片地,希望能蒔花弄草,晴耕雨讀。不必歸隱故里,也能採菊東籬下,只是要悠然見水泥山⋯⋯

種種花花草草增加綠意,各種心理學和醫學的研究都指出,能夠增加幸福感、延年益壽,即使是在辦公室種些小盆栽也多少有些效果。

這應該是因為,即使我們的文明發展到現代化國家大部分人口都住在都市裡,可是我們過去上萬年習於蒔花弄草的基因還在我們身上吧。

圖/pixabay

過去的我所不知道的事

如果能種上些果樹或蔬菜,還可以天天有新鮮有機蔬果可吃。小時候,我們馬來西亞老家院子就有棵番石榴樹(也就是芭樂樹)。和台灣市場上甜到多吃會糖尿病的芭樂相比,馬來西亞的芭樂不太甜,可是老家那棵芭樂樹結出來的芭樂,經過我們兄弟的童子尿澆灌,特別的鮮甜好吃。

老家社區那整塊地,在建為住宅區前,是片農地。我們搬過去沒多久就發現,我們家以前剛好是種番薯的,因為院子會源源不絕地長出番薯葉,所以天天有吃不完的番薯葉。那時候最討厭的事之一,就是被阿嬷強押去撕番薯葉梗外層的粗纖維,因為一來很麻煩不符合我能偷懶就偷懶的個性,二來是晚餐又要有吃不完的番薯葉了。以致於有十幾年,我在外用餐一定避過番薯葉,誰堅持點番薯葉就和誰翻臉。一直到搬了家,沒源源不絕的番薯葉可吃了,我才開始想念番薯葉。

搬了家,院子沒了番石榴和番薯,但我媽種了幾棵木瓜。我妹來台灣唸了幾個月書,有次我們去超市買了棵木瓜,我切開木瓜時,她說裡頭的種籽看來很可口想吃,我驚呆了。我們家種了木瓜那麼久,她居然不知道種籽是要丟棄不吃的。原來她從小到大從來都是媽媽切好木瓜送到她面前餵她吃的⋯⋯

我也是一直到幾年前,才知道原來番石榴、番薯和木瓜,根本不是原生於亞洲的植物,還一直以為它們的原產地應該就是馬來西亞或台灣吧 XD 原來它們是哥倫布大交換,從美洲大陸遍佈全世界熱帶或亞熱帶地區的。不僅是番石榴、番薯和木瓜,玉蜀黍、番茄、辣椒、可可、馬玲薯、花生、草莓、香草、向日葵、南瓜、橡膠、鳳梨、腰果、四季豆等等重要的作物,也都來自美洲大陸。

植物精彩的故事

其實,在哥倫布大交換前,很多植物的產品,就是驅動長途貿易的最大動力了,沒有之一。即使是絲綢,也是蠶寶寶把桑葉透過生物體轉換出來的,沒有桑樹就沒有絲綢。其他的還有茶葉、胡椒、肉豆蔻、丁香等等。更甭提我們人類的主食就是各種穀類。

許許多多植物,都和我們的文明及文化有千絲萬縷的關係,塑造了我們物質和精神世界的豐富性,也治癒了我們的身病和心病。我們為了栽了方便、產量、美觀和口慾,改造了許多植物,植物反過來也改造了人類。我們人類就是為了栽種植物來養家糊口才定居下來的,也為了能激刺我們精神和口味的植物展開跨洋貿易的大冒險。

《形塑人類文明的 80 種植物》(Remarkable Plants That Shape Our World) 就是個人與植物交織出的故事。除了植物史家海倫與威廉‧拜能 (Helen & William Bynum) 為植物和人類可歌可泣的關係立的傳,還有精彩的故事,及與英國皇家植物園合作,也有收藏有 205 幅館藏植物手繪圖,藉以歌頌植物的歷史、人類的歷史,以及植物存在本身的偉大意義。即知性又賞心悅目,會是所有對植物及園藝甚至廚藝有興趣的朋友一讀。

《形塑人類文明的 80 種植物》分為八個部分,精簡扼要但又不失深度地探討了 80 種植物的文化、地理和經濟聯繫。這 80 種植物即使有些好像在我們生活中不熟悉,但讀了其中的故事,才驚覺原來我們社會早已深受其影響深遠。

我們的社會早已深受植物的影響。
圖/unsplash

讀出生活中植物為我們帶來的樂趣

〈改變世界〉的植物,介紹的是讓人類在全球許多不同地方展開定居生活的植物,包括小麥、玉蜀黍和稻米等主食。我們今天幾乎都能吃到這些各地的主食,遍佈到我們都忘了它們是原產何地。除了我們熟知的糧食,搾油的橄欖和釀酒的葡萄也列於其中。

當文明發展出來說,我們對食物的要求不僅只是量而已,〈味道〉探討的是令我們的飲食變得活潑豐富的植物,從基本、好用的蔥屬植物到香料和番紅花的奢華口味。番紅花是單位重要最貴的香料之一吧,要大量人力在清晨採摘,一顆花也只有至多三個寶貴的花柱。要不是歐洲人極渴望肉豆蔻、丁香、胡椒而展開大航海時代,我們就不會有現在的現代社會。馬來西亞和台灣過去在香料貿易中扮演極為重要的角色。馬來西亞料理就又辣又香,嗜吃辣椒和辛香料,讓我很久才適應他國食物;也別忘了啤酒也要加料,要用俗稱啤酒花的蛇麻提味。

植物對人類一個救命功能是能當藥,〈解藥與毒藥〉提醒我們,植物中的活性物質往往會達成一個微妙的平衡,在不同的劑量下,可以是救命仙丹,也可能是危險毒藥。這單元甚至可以單獨成好幾部的科普書,畢竟全世界最著名的藥典《本草綱目》就是用中文寫的。即使是西藥,現在仍有不少藥物是來自或本來自植物,例如阿斯匹靈和奎寧。現在我們也不斷發掘植物在藥用和美容上的藥果!

〈科技與力量〉描述是哪些植物幫忙創造了我們的物質世界,包括船隻、房屋、服裝和家具,甚至還有武器。在冷兵器時代,最常上戰場的不是只有刀劍,還有木製的弓箭。在這個金屬和塑膠製品又廉價又耐用的時代,本製品仍給人更多溫暖窩心的感覺。在人造纖維又廉價又耐穿的時代,還是有更多人選擇了棉、麻織品。

〈經濟作物〉檢視的某些植物的產品,例如茶葉、咖啡、可可豆、棕櫚油或橡膠,在全球的需求量龐大。很多人一天沒喝上至少一杯茶或咖啡就無法正常運作,我也不例外,早上必喝杯厚奶茶,工作熬了夜,更需要一杯接一杯才能在白天保持清醒。為了大量供應這些經濟作物,很多發展中國家剷平土地來耕作這些植物,這在馬來西亞尤其明顯,滿山遍野都是棕櫚或橡膠,沒幾處可再容下紅毛猩猩和犀鳥。如同這些植物的產品改變了我們的栽種、購買、交易、販賣和消費型態,對世界市場和財富仍然有強大的影響力,這些植物帶來了一連串的環境變遷,貪婪的人類還不知如何承受。

有些覆蓋了部分地表,乍看之下沒特別用處,但〈地景〉要訴說,有途植物以獨特的方式成為一種標記——加州高聳的紅杉、澳洲的桉樹、熱帶海岸耐鹽的紅樹林。它們每一種其實在歷史上和當代都扮演了一角,形塑或改變了人們對當地氛圍的認知。

〈崇敬與仰慕〉和〈大自然的奇觀〉,海倫與威廉‧拜能要歌頌出類拔萃、令人刮目相看、不再以實用性為主的植物。這樣的植物也塑造了我們的歷史和我們對歷史的視覺紀錄。例如在我們的文化下,蓮花就是代表出淤泥而不染的高貴品格,也是佛教的代表標誌之一。椰棗樹在聖經和古蘭經中多次出現;許多花卉,例如蘭花、鬱金香和玫瑰具有鮮明的視覺美感,啟發了不同文化的藝術家,把大自然短暫的時刻化為永恆。

讀了《形塑人類文明的 80 種植物》,在苗圃花園、廚房餐廳,或甚至生活任何方面,看到這些植物或其製品,都能生出不少樂趣!

圖/pixabay

本文原刊登於 The Sky of Gene

The post 【Gene 思書齋】植物與我 appeared first on PanSci 泛科學.

【Gene 思書齋】透視大數據的那些秘密

$
0
0

今天搭公車時,看到一個年輕男人以乎有些疲憊,勞基法愈修愈爆肝,他時而望著窗外,時而低頭沉思。

根據我多年的社會觀察和讀了心理學的書籍,我知道他一定是忘了帶手機或手機沒電了⋯⋯

好啦,這是網路上看來的一則笑話,我並沒有搭公車。可是如果有一天,手機不在身邊的話,我們什麼都不知道了,甚至會不會連我們喜歡什麼樣的人、喜歡吃什麼、喜歡聽什麼音樂、喜歡愛什麼電影,我們都要問問手機或社群網站,這會很令人意外嗎?

因為有了大數據和演算法,加上政府迫不及待要燒錢的 AI(人工智慧),有一天我們的手機或社群網站比我們自己還瞭解自己,並不是不可能。然而 AI 加大數據和演算法的三劍合璧,不只是讓我們選擇自己喜歡的東西,而是在找工作、買保險、看醫生時被挑選,會讓我們更幸福嗎?

有一天我們的手機或社群網站比我們自己還瞭解自己,並不是不可能。然而 AI 加大數據和演算法真的會讓我們更幸福嗎?
圖/pixabay

大數據亦正亦邪 一定要小心使用!

就像人類歷史上的最有工具一樣,大數據肯定是雙面刃,水可載舟、亦可覆舟。談大數據有多威的書籍可以汗牛充棟,可是人們畢竟是喜歡報喜不報憂的,如果要兼聽則明,我們能夠知道大數據有多可怕呢?《大數據的傲慢與偏見:一個「圈內數學家」對演算法霸權的警告與揭發》(Weapons of Math Destruction: How Big Data Increases Inequality and Threatens Democracy)是一本難得的好書。

不要以為大數據如何落入壞人手裡,才會有其破壞力,如果不懂得大數據,卻自以為地要用大數據,這樣即使落入良善的人手裡,也可能適得其反。不透明、不受管制的演算法,已經讓社會和個人付出慘痛的代價。

作者歐尼爾大爆料你不知道的秘密

《大數據的傲慢與偏見》作者凱西.歐尼爾 (Cathy O’Neil) 就是位「圈內數學家」,這本書算是爆料吧,雖然沒啥腥羶色,可是讀起來還是令人膽戰心驚。她是哈佛大學數學博士,曾任教於巴納德學院,隨後投身金融業,任職於對沖基金公司德劭 (D.E. Shaw)。離開金融業後曾於多家新創企業擔任數據科學家,負責建立預測人們購買和點擊行為的模型。

熱愛數學的歐尼爾卻稱那些被濫用的演算法為「數學毀滅性武器」。她過去在金融業中待過,很清楚華爾街的投資銀行如何籍由演算法就不勞而獲。姑且不論這公不公平,演算法的濫用好幾次釀成大禍,這已不是啥新鮮事了。裡頭的黑箱甚至連評級的公司都搞不清楚真正的風險,讓一堆 AAA 級的衍生性金融商品成了一個個不訂定炸彈。

《大數據的傲慢與偏見》裡,她著眼之處遍及我們想得到或想不到的地方,列舉出許多被大數據綁架而落入囚徒困境的例子,她指出這些都增加了不公平甚至還破壞了民主。身處在高教工作中,就非常能感受全世界大學莫名其妙受到營利機構不透明、自以為是的排名給綁架,迫使政府和大學高層被趕鴨子上架地隨波逐流,甚至踐踏學術尊嚴和專業來逢迎討好用黑箱作業搞排名的公司。

《大數據的傲慢與偏見》中提到一位教學認真優異深受學生、同事和家長喜愛的教師,在完全不知道數學模型哪裡錯得離譜的情況下,被解了僱,申訴無門;保險公司為了獲得更高的盈利使用了大數據,成為了一種勢劫貧濟富,讓窮人付出更昂貴的價格;因為性格測驗不公開的評分而無法找到工作;信用卡用在某些商店就被降低額度;專門欺騙窮人的不實廣告等等等。

這其中的錯誤可能永遠都無法被找到,使用大數據的人就可能像信仰宗教典籍一樣盲從。我們來做個想像,假設有個人被大數據誤判成犯罪機會高的人,這個大數據分析的標籤會跟著他一輩子,那麼他不時會被警察騷擾,或者也找不到正常的工作,所以他走頭無路乾脆作奸犯科,大數據好棒棒地準確預測了,所以大數據就永遠是對的?

使用大數據的人就可能像信仰宗教典籍一樣盲從,但大數據永遠是對的嗎?
圖/pixabay

使用大數據要慎而思之

我們很多人相信數學是「中性的」,一加一等於二不是件好事也不是件壞事。可是數學模型畢竟是人建出來的,是人決定要放什麼參數進去,要放在分子還是分母,以及如何估計出參數。只要是人,就有犯錯及無知的可能。何甭提就算不是犯錯,大數據也非完全不能操作的,尤其是在競爭激烈的選戰中。

對於操縱我們人生各階段的各種黑箱數學模型,歐尼爾認為那些建立模型的人應該為他們所創造出來的演算法負起更多責任,而政策制定者更應該負起監督管理的責任。然而要如何監管以免大數據破壞我們珍視的價值,這又是另一個大哉問了。

雖然身為數學家,但《大數據的傲慢與偏見》裡一條公式也沒有,只有一個又一個令人嘖嘖稱奇的真實案例,叫人觸目驚心,卻又不斷有精闢的分析,讓人忍不住要一口氣讀完,這是一本可讀性極高而且也很重要的一本書,值得所有公民一讀!

本文原刊登於 The Sky of Gene

The post 【Gene 思書齋】透視大數據的那些秘密 appeared first on PanSci 泛科學.

英國狂牛症│食安簡史2:打怪前先看圖鑑

$
0
0

編按:食品安全近年引發許多焦慮,臺灣的食安政策究竟該如何制訂,才能讓大家吃得安心放心呢?或許,可以從有著與食安交手百年經驗的國家中,學習效仿、制定適合的食安政策。本系列以歐盟、英國、美國、加拿大、中國等食安相關機構、事件為例,整理歸納出二十一篇系列文章,邀請大家破關點技,點好點滿成為食安鬥士,替自己把關。

執政黨頑固地堅持食安政策沒有問題,對內打壓科學界,對外用政治作秀混淆人民,直到民眾開始死亡,醜陋的事實爆發民怨、產業崩潰、最終導致政黨輪替…… 20年前的英國政府,成了食安史上最寫實的負面典範。

英國狂牛症:當政治考量優先食品安全之時

歷經兩次大戰後,英國於 1972 年加入歐洲共同體,從此英國法制必須以宏觀的跨國視野進行調整。而正值「食品與藥品銷售法」百週年,主掌英國食安的農、漁業食品部 (Ministry of Agriculture, Fisheries and Food/MAFF) 出版了一本《食品安全:百年來的進步》宣揚英國政府的政績1

但真實的世界並沒有因為政府出版了新書就變得週全, 1988 年的英國爆發沙門氏菌中毒案件,時任的衛生部長在媒體上直指禍首乃是雞蛋,拙劣的風險溝通不僅讓英國蛋價一落千丈,更讓他因此下台2,3

為了回應這次食安事件,英國政府在 1989 年頒布了《食物安全:保護消費者 (Food Safety: Protecting the Consumer) 》白皮書,更於 1990 年時頒布了「食品安全法 (The Food Safety Act 1990) 」,此法規列出食品安全的原則綱要,地位接近我國的「食品安全管理法」。儘管如此,當時英國在野黨仍對食安管理政策提出了質疑,但執政黨仍信心滿滿4,最終,由一群瘋狂的牛隻衝出英國,襲向全世界[註1]。

英國紀念狂牛症的郵票。圖/wikipedia

那群吃屍體長大的牛:是誰開始讓草食動物吃肉?

在狂牛症肆虐最嚴重的那幾年,疑似含有致命病原的飼料,從英國大量地販售到全世界。當時,台灣向英國購買的狂牛飼料重達四萬五千噸5

不知道是誰想出來的點子,開始讓草食動物吃起了帶肉的飼料。也許從演化的角度來說是倒行逆施,但看到牛變得又肥又壯,有誰會不心動呢?

在肉品製程中,總有些無法變成產品的內臟、獸骨和碎肉被拋棄。約莫 1970 年代,商人開始用這些剩餘物製成高蛋白質的肉骨粉飼料 (meat and bone meal/MBM, 而高蛋白飲食成功地讓牛隻的體重快速增加、提升經濟效益。在利之所趨的誘因之下,商人和牧場主無不趨之若鶩。很快地,肉骨粉飼料就擄獲了英國牧場主的心,以及草食動物的胃。然而,無奸不成商,為了追求更大的獲利空間,飼料商開始將病死亡的牛羊屍體混入肉骨粉。不知道哪一天,某隻有死亡蛋白的羊屍被絞成了肉粉,於是只在羊群的瘋病,就此跨種到了牛群裡,震撼全球的狂牛症,即將拉開序幕……

除了作為牛羊的飼料外,消毒加工的粉紅肉渣也賣去製造狗糧和貓糧。圖/wikipedia

1983 年,在英國的某個農場裡,獸醫師雷·威廉 (Ray Williams) 觀察到零星牛隻出現攻擊傾向。牛屍被製成玻片送到英國中央獸醫實驗室 (Central Veterinary Laboratory;CVL) 進行研究,直到 1985 年 9 月,病理學家卡羅爾·理查森 (Carol Richardson) 在觀看病牛的大腦切片時,突然覺得此海綿狀的大腦像極了羊群的羊搔癢症 (Scrapie) 。沒多久,此病有了饒口的名稱-牛海綿狀腦病 (Bovine Spongiform Encephalopathy, BSE)6

越來越多的科學的證據呈報到高層,某種恐怖的新興疾病正在攻擊食品的產業鏈,而政治因素卻影響了英國政府的判斷。為了產業經濟的發展,農、漁業食品部選擇封閉疫情資訊,未通報飼料出口國,也沒有知會英國健康部。缺乏獨立風險評估機構的管理架構,開始搖搖欲墜、命懸一線。1987 年,流行病學證明飼料就是引發狂牛症的原因。隔年,英國政府開始全面撲殺病牛、禁止使用肉骨粉飼料。

雖然英國政府禁止本國使用肉骨粉,卻仍將這種危險的飼料出口到世界各國,而歐盟也因信任英國的風險評估能力,並未加以制止7。從 1988 到 1996 年期間,全球超過 70 個國家向英國購買了危險的肉骨粉飼料,而台灣就進口了 4 萬 5 千噸之多5。面對新興的瘟疫,制定食安法規百餘年經驗的大英帝國,為了政治利益無視科學證據的政治作為,現今仍令人費解。

雖然英國政府禁止本國使用肉骨粉,卻仍將這種危險的飼料出口到世界各國。圖/pixabay

時序進入 1990 年,全英國已近 1 萬 5 千頭牛遭到感染。但政府的作為和科學證據之間,矛盾越來越劇烈。該年,時任農、漁業食品部部長的約翰·岡默 (John Gummer) ,在電視上和自己的六歲女兒大啖牛肉漢堡,以向民眾保證牛肉的安全;同年,第一例狂貓症的貓病例被證實。 1993 年,英國政府的首席醫務官 (Chief Medical Officer)向民眾保證食用牛肉絕對安全無虞;同年,病牛數量已飆升超過十萬頭5,同時英國政府開始壓制民間科學團體檢驗狂牛病,禁止民間科學組織發聲,英國政府試圖以政治的方式消弭異己的聲音。

1995 年,一名疑似因食用牛肉而染上怪病的 16 歲少年死亡 [註2];翌年,調查認定少年就是因為吃了狂牛症的牛肉而死亡。至此,政治的掩蓋終究敵不過現實,英國政府承認食用牛肉的風險,對許多政治家來說,這只是一段政治生涯的結束,但對全球管理食安的政府和仰賴食品鏈維生的企業來說,劇烈的變化和革新強迫她們直視民眾和科學,政府的威信和產業的存亡,現在才真正要開始。

庫賈氏病與狂牛症病例的分布圖。圖/wikipedia

本文為系列文章,下一篇請見:英國和歐盟食安簡史│食安簡史3:盟友與豬隊友

註解

  • [註1]:21 世紀前的英國在食安管理上存在著制度上的缺失,當時體制裡負責保護消費者安全的是農、漁業食品部,但該部門同時也肩負著振興英國經濟的責任。在 1990 年新法上路時,在野的工黨批評此制度將造成提振經濟維護國民健康之間的衝突,將迫使公務員在兩者之間擇一,恐將對民眾造成損害,而在野黨的批評未被政府受採納。於是英國的食安管理就在消費者權益和產業利益之間取捨擺盪,而這個恐怖的平衡從 1970 年代開始鬆動,終於在 1990 年代狂牛症爆發後,導致全世界的危機。
  • [註2]:人也會產生類似狂牛症的疾病,稱為庫賈氏症 (Creutzfeldt-Jacob Disease; CJD)。此病原僅限於遺傳和少數人吃人的案例,但 90 年代後出現了數起非遺傳性、又找不出病因的患者,而患者們居住於有狂牛症疫情的英國,因此備受聯想。此類疾病被稱為新型庫賈氏病 (new variant CJD;nvCJD),被認為和食用染有狂牛症的牛肉有關。

參考資料

  1. Ministry of Agriculture, Fisheries and Food (1976) Food Quality and Safety: A Century of Progress, HMSO
  2. 潘子明、王躬仁 (1998) 沙門氏菌與食品中毒。疫情報導。14,196-207
  3. 蛋殼恐带沙門氏菌英國國會餐廳禁烹炒蛋或烘蛋 (2013) 。中時電子報
  4. 魏秀春 (2011) 英國食品安全立法研究述評。井岡山大學學報。32,122-130
  5. 李淑慧、張國慧、鍾明華、林士鈺 (2001) 綜說:從分子生物學觀點探討傳染性海綿狀腦病致病機轉。行政院農業委員會家畜衛生試驗所
  6. D. T. Max (2009) 蛋白質殺手-狂牛病、致死性失眠症與普利子的糾葛之謎。天下文化。中華民國
  7. 林昱梅 (2015) 論食品安全管理法制中之預防原則:以歐盟與臺灣為中心。台大法學論叢。國立台灣大學法律學院。中華民國

The post 英國狂牛症│食安簡史2:打怪前先看圖鑑 appeared first on PanSci 泛科學.

臺鐵普悠瑪的大事故,聚集了眾多結構性小失誤?由「海恩法則」談起──《科學月刊》

$
0
0
  • 馬士元/銘傳大學都市規劃與防災學系副教授。

2018 年 10 月 21 日,發生在宜蘭線新馬站的普悠瑪列車出軌翻覆事件,除造成重大人命傷亡外,在釐清事故原因過程中,也讓臺鐵營運與安全管理的種種問題浮現。令人震驚的是,事故前的所有安全防線全數失守,從列車採購驗收與維修、駕駛員調度、設備可靠性和運轉安全紀律,每一環節都發生嚴重失誤,更從此事件中發現臺鐵竟沒有專責的營運安全管理體系 (safety management system, SMS)。

這個已有百年歷史的組織到底出了什麼問題?是否還有其它沒有浮現的風險?未來要如何建構一套可行的安全管理體系?

臺鐵竟沒有專責的營運安全管理體系 (safety management system, SMS)。這個已有百年歷史的組織到底出了什麼問題?圖/pixabay

安全管理領域的「海恩法則」

在安全管理的領域裡,常常被提及的海恩法則 (Heinrich’s Law),是美國工業安全先驅者海恩 (Herbert William Heinrich) 在 1931 年所寫的著作《以科學方法探討工業意外的預防》 (Industrial Accident Prevention: A Scientific Approach) 中提出。理論基於以下幾個論點:

  1. 類似事故的數量,與其嚴重程度之間存在數學關係。
  2. 工傷事故最常見的原因是員工的不安全行為。
  3. 減少工作場所受傷的總體頻率,可以讓嚴重傷害的數量相對減少。

而海恩法則最讓人熟知的,就是所謂事故三角錐 (accident triangle) 的概念,此法則的提出,帶動工業國家對於事故預防的科學化分析方法,日本國鐵還曾據此推動「330運動」,以此降低事故風險。雖然海恩法則的數據與不同產業環境所歸納的實證調查有所出入,但這種重大災害並非單純的「個別事件」,而是牽涉到背後的組織安全紀律管理、安全維護資源配置等問題,且必須透過有系統的分析,挖掘所有組織內部導致不安全因素的風險管理體系。在日後開枝散葉到航空、高鐵、高科技製造業等新興工業領域,甚至應用在各類災害的防災工作上。

每一次重大事故的背後,都意味著組織內部已發生 29 次輕微事故、300 次幾乎造成事故的失誤及 3000 件不安全的狀況或者行動。而解決重大事故發生的危機,就必須從最基本的面對「危險事件以及不規則狀況 (dangerous events and irregular looks, DEVIL)」開始。這就是所謂的安全文化的建立。圖/科學月刊提供

臺鐵事故的背後結構

回到臺鐵的問題,軌道運輸系統是非常複雜的機制,涵蓋軌道與車站基礎建設、電力(能源)設備、通訊與號誌系統、人員與列車調度運轉及車輛養護維修等。而傳統鐵路又有著古典與現代並存的特質,各車種複雜、客貨運交互運行、平面與道路交會及站體配置多樣化等特性,使得營運管理與安全維護的難度非常高。

回到臺鐵的問題,軌道運輸系統是非常複雜的機制,使得營運管理與安全維護的難度非常高。圖/pixabay

鐵路事故的歷史跟鐵路一樣悠久,從煤炭燃油的類比時代到今日電力資訊的數位時代,許多事故發生的原因,大多在於人機界面沒有得到妥善的管理,必須從組織運作如何建構失效安全 (fail safe) 的防禦中尋找對策,也就是所謂機械物理失效安全、電子電機失效安全及程序失效安全三大方向來找出解決方案。

以臺鐵 2014~2018 行車異常事件為例,在 2397 件中車輛故障佔 1117 件,運轉保安裝置佔 500 件。車輛故障的經常性發生,表示維修與品管能力發生問題,而臺鐵在欠缺備援車輛調度狀況下,為紓解營運壓力,不得不放寬安全標準讓列車上線運轉,造成駕駛員必須同時在行車時處理故障問題,導致資訊紛雜超過負荷而釀災,這也是行政院調查報告指出的重點。

而運轉保安裝置故障,在鐵路系統中更屬於不可忍受之風險。再者,資訊時代訓練出來的駕駛員,極端仰賴自動安全設備,因此在人機界面無法有效溝通、列車自動保護系統 (automatic train protection, ATP) 也無法保險狀況下,是造成普悠瑪事故最主要的原因。所以,臺鐵當務之急為降低事故三角錐底部的異常狀況數字,以避免下次的災難性事件。

臺鐵除車輛設備與運轉保安裝置故障外,近年來多次發生電力線斷落、軌道路基不實導致出軌,則為更嚴重的問題。圖/pixabay

但臺鐵除車輛設備與運轉保安裝置故障外,近年來多次發生電力線斷落、軌道路基不實導致出軌,則為更嚴重的問題。在近年,臺鐵引進太魯閣與普悠瑪兩系列傾斜式列車,車輛行駛過彎不減速的設計,對位於彎道路線的軌道施加非常大的應力,因此需大幅提高的軌道品質。

以臺鐵宜蘭線雙軌化區間的路線數據為例,曲率半徑小於 600 的彎道路線達到 25 公里,佔全國 86.7 公里的 28%,而曲率半徑大於 600 的彎道路線 134 公里,佔全國 514 公里的 26%,且沿線軌道品質不佳,導致列車晃動嚴重,更可能因此勾斷電車線。但負責養護的宜蘭工務段,編制 431 名卻僅有 338 名,缺員高達 22%。而臺鐵據以大幅降低人力需求的「軌道結構安全提升計畫」,包括軌道更新、採購養護車輛等項目,卻要到 2025 年才能完成,在此條件下,要能夠控管行車風險,就成為非常困難的工作。

避免重大事故發生,解決方向為何

由於普悠瑪失事的衝擊,社會各界對臺鐵產生非常嚴重的信心危機,因此從安全管理的角度重整營運,再延伸解決經營獲利的難題,才是根本解決事故背後結構性問題的有效途徑。以下提供幾個可能方向:

  1. 建立安全管理體系,由外部專業團隊協助,以合理風險抑低 (as low as reasonably practicable, ALARP) 原則,定期檢討異常原因,並建構改善對策,甚至開放民眾對服務品質的調查,進行問題溯源。
  2. 臺鐵各安全訊號與行車管制應建立整合系統,重新以人機界面原理訂定行車安全準則,避免駕駛員接收過多資訊,無法在安全的環境下駕駛列車。
  3. 安全備援的成本應該合理計算,並且納入票價定價機制中。
  4. 建立專門車種的駕駛員證照制度。
  5. 應計算各路線區間合理的維修人力與資源需求,包括車輛檢修、軌道、電力和號誌維修等需求應該整合評估。
  6. 應重新檢討臺鐵組織型態,以區域劃分為基礎,各區域建立責任經理制,將運務、工務、機務和電務號誌等功能重新整合。
  7. 以提升員工薪資至少 10%為目標,來規劃國營公司化方案。可參考臺北捷運公司模式,結算臺鐵之虧損與負債,將資產與營運分離,以營運公司型態向政府承租資產運作,並推動多元化的經營,保存鐵路文化資產、結合永續觀光和動態運作及各種提升獲利的創新。
  8. 建立本土化維修能力,並鼓勵基層維修單位進行設備改良之研發,讓列車與設備能夠隨服役年限增加,具備自主升級且持續服務的能力。

建立「再小的異常都應該記錄並且問為什麼」的職人精神

臺鐵用煤炭時代的組織,來運轉資訊時代的高速系統,已到迫切需要再造的時刻。實際上以安全管理為核心的營運制度建立,並不一定是大幅增加人力或大買設備才能達成,而是要徹底改變組織對於安全的認知,且合理計算為確保安全應有的成本,將其納入企業服務定價的核心。再者,必須建立「再小的異常都應該記錄並且問為什麼」的職人精神,貫徹海恩法則、失效安全管制和合理風險抑低等要求,才能真正對症下藥,預防下一次悲劇的發生。

 

〈本文轉載自《科學月刊》2019年1月號〉

一個在資訊不值錢的時代中,試圖緊握那知識餘溫的科普雜誌。

The post 臺鐵普悠瑪的大事故,聚集了眾多結構性小失誤?由「海恩法則」談起──《科學月刊》 appeared first on PanSci 泛科學.

英國和歐盟食安簡史│食安簡史3:盟友與豬隊友

$
0
0

編按:食品安全近年引發許多焦慮,臺灣的食安政策究竟該如何制訂,才能讓大家吃得安心放心呢?或許,可以從有著與食安交手百年經驗的國家中,學習效仿、制定適合的食安政策。本系列以歐盟、英國、美國、加拿大、中國等食安相關機構、事件為例,整理歸納出二十一篇系列文章,邀請大家破關點技,點好點滿成為食安鬥士,替自己把關。

英國在野黨質疑,沒有獨立的食品安全評估機構,消費者何來的保障?

2003 年 4 月,歐盟碰上了一個棘手的問題,會員國之一的奧地利,以基改植物危害當地的生態環境為由,申請禁止基改作物在境內耕作 1。歐盟執委會向甫成立的歐洲食品安全局 (European Food Safety Authority/EFSA,以下將簡稱歐洲食安局) 求助科學證據。

同年 7 月,歐洲食安局發表科學報告,沒有證據顯示基改作物將危害當地生態環境。到了 9 月,執委會據此做出了決定:申請駁回。此案彰顯了歐洲政治家對科學的尊重,歐盟食安開始迎接以科學分析為基礎的未來。

在一群狂牛奔騰歐洲之後

2002 年成立的歐洲食安局是食品安全的里程碑,該組織的任務是以科學證據、合理的風險評估來維護消費者及廠商在食品上的安全。回頭來看,歐洲食安局的成立並非一蹴可幾,而是 90 年代歐洲連續爆發多起食安事件的教訓而成。

在 1988 年,當初英國科學界確認狂牛症的源頭就是飼料,但政府為了經濟利益,不僅沒有知會歐盟夥伴,更持續的將病的飼料銷售至歐洲各國 2。疫情持續延燒到 1990 年,當時科學尚不能證明人類是否會感染狂牛症,因此歐盟以較寬鬆的角度來處理此問題,並未限制英國牛肉的進口。到了1996 年,英國政府終於無法自欺欺人,官員坦承英國牛肉有致命疑慮,歐盟才緊急阻止病牛進入食品鏈,但為時已晚,死亡的民眾陸續出現。缺乏科學風險評估、食品安全管理,已讓歐盟嘗到了苦頭。

緊接著 1997 年,世界貿易組織 (World Trade Organization, WTO) 因歐盟所提出的風險評估科學證據不足1,宣判歐盟敗訴,歐盟必須同意讓美國和加拿大的荷爾蒙牛肉進入市場。一波未平,一波又起,在遭遇兩次重擊的歐盟,1999 年更爆發農業大國比利時戴奧辛汙染飼料3,大規模地毒害了該國養雞業。

狂牛症、美牛和戴奧辛蛋,連續三次重擊打醒了歐盟,也開啟了歐盟食品安全管理的改革之路。

歐洲多次出現汙染雞蛋,讓政府體會到食品生產履歷的重要性。圖為印製在蛋殼上的身分證,目前採行此法的至少有德國和英國。 圖/Justus Blümer [CC BY-SA 2.0] @wikipedia

戴奧辛蛋事件後不久的 2000 年,歐盟發佈食安白皮書 (White Paper on Food Safety)3,具體提出以「從農場到餐桌」的觀念,建言如下1
  1. 消費者優先
  2. 消費者知情權
  3. 獨立風險評估機構
  4. 食品追蹤系統
  5. 決策的透明性
  6. 積極預防

歷經兩年的準備之後,歐洲食安局終於在 2002 年成立。

歐洲食安局標誌。 圖/wikipedia

「獨立、科學風險分析、主動研究」歐洲食安局誕生了

有鑑於狂牛症時期,英國的科學意見被政治力打壓,因此「獨立」成了歐洲食安局首要的課題。歐盟食安局的預算直接來自議會,也不接受任何利益團體的財源。而自成立以來,多次法院和歐盟執委會的決定,都讓食安局在民眾的心中樹立了科學獨立的聲譽,如 2003 年的基改作物案即為一例,歐盟執委會尊重食安局的科學報告,駁回奧地利的要求,讓基改作物能夠在奧國境內耕作 1

在災難的歷史裡,常看到許多「重大危害!但科學尚無法證實」的例子(如:孕婦感染茲卡病毒將導致畸形兒)。因此歐洲食安局的報告引入了「風險評估」的概念,將食安危害的「嚴重程度」和「可能性」納入報告,以避免如狂牛症風暴-「對民眾危害巨大,但發生機率不明」的災難出現1, 2

而對於新興威脅的「主動」研究,也是歐盟食安局的一項特色,例如在 2006 年時發表牛群裡的藍舌病 (bluetongue)4;以及長期追蹤重大案件,例如中國三聚氰胺毒奶粉在 2008 年爆發,但食安局並沒有在事件結束後就停止研究,反而在 2010 年又公佈最新的研究報告5。歐洲政府對重大科學議題能夠投予長久的資源,其態度絕對是台灣所效法的。

當然,他國的制度無法完全移植到另一個國家,我國政府的財政和公務員體制可能也無法額外設置獨立的食品安全風險評估中心,但他國的組織精神-獨立、科學分析、主動、透明等特質,台灣政府應基於我國財政、人力、政府和民眾互信程度,適度地將他國精神納入,塑造一個讓我國民眾可信賴的科學風險溝通組織。

上圖:基因改造後含有胡蘿蔔素的黃金米;下圖:歐洲某政黨在議會上表達反對基改食品的立場,相較於美國的「無罪推定」態度,歐洲對基改食品則偏向「積極預防」。 圖/wikipedia

下一篇請見:跨國食品詐欺、本國食品汙染│食安簡史4:盟友與豬隊友

參考資料

  1. 洪德欽 (2015) 歐盟食品安全制度對臺灣食安改革的啟示。台大法學論叢。國立台灣大學法律學院。中華民國
  2. 林昱梅 (2015) 論食品安全管理法制中之預防原則:以歐盟與臺灣為中心。台大法學論叢。國立台灣大學法律學院。中華民國
  3. 食品衛生管理法。國會圖書館。中華民國
  4. 歐洲醫衛機構介紹──駐歐盟兼駐比利時代表處。中華民國
  5. EFSA reduces tolerable intake level for melamine. 歐洲食安局官方網頁

The post 英國和歐盟食安簡史│食安簡史3:盟友與豬隊友 appeared first on PanSci 泛科學.

Viewing all 1714 articles
Browse latest View live


<script src="https://jsc.adskeeper.com/r/s/rssing.com.1596347.js" async> </script>