Quantcast
Channel: 科學傳播 – PanSci 泛科學
Viewing all articles
Browse latest Browse all 1714

想領錢只要刷臉就行?銀行人臉辨識可沒這麼簡單

$
0
0
  • 李蘭萱 (Lan-Xuan Li)/政治大學財務管理研究所碩士生,目前於產業分析研究崗位實習。主要專業領域為計量經濟、金融創新服務、ICT 數位化科技應用等。喜歡桌球,並認為必須結合統計、科技,才可以描繪出未來「以人為中心」的商業模式。

靠臉領錢辦得到嗎?其實科幻場景已很近

不知道大家有沒有遇過一種情況呢?急需用錢時站在 ATM 前準備提款,卻發現自己忘記金融卡密碼了,隨著身後排隊的人群愈來愈多,心也逐漸焦躁不安,與此同時,或許你的腦中會惱怒地想著:

如果可以靠臉領錢那該有多好啊!

這敘述乍看之下彷彿是僅存於科幻電影中的想像,但實際上,隨著科技發展,這種操作已非遙不可及。「只要站在鏡頭前刷臉就能提款轉帳」的未來,其實比想像中還要近。

不想要排隊?那就刷臉吧!圖/wikipedia

想成為識別的特點,要既普遍又獨特

隨著電腦運算效能的演進、行動設備普及化,自動化的「生物識別系統」──尤其是指紋和語音識別,早已在近十年被廣泛使用。不過,即使指紋、語音等生物資訊已逐漸普遍,值得留意的是:除了一般性消費服務的應用之外,銀行、金融業者也嘗試將各種生物識別技術,導入銀行服務應用之中。

比如歐洲銀行業管理局 (European Banking Authority),在 2018 年發布的《EBA Report on the Prudential Risks and Opportunities Arising for Institutions from Fintech》報告中,便提到生物識別技術在「身分識別」的功能上,須具備幾個特點:

  1. 普遍性:確保每個人都有用來識別的特徵。
  2. 獨特性:特徵在個體間有所差異。
  3. 持久性:同個體的該項特徵不會隨時間有太大改變。
  4. 可收集性:與特徵獲取或測量方式的難易度有關;愈難取得則識別效果愈差。
  5. 規避難度:規避難度會影響技術的安全性和可靠性。
  6. 社會接受度:客戶對生物辨識的的接受或抵抗會嚴重影響方法的使用。  

符合這些條件的生物特徵,大致上可以分成指紋、語音、虹膜、臉部等「外部生理特徵」以及「內部生理特徵」,例如靜脈、心跳。其中,又因為指紋辨識具有方便、快速、成本低廉的特性,所以無論是實體銀行和行動銀行都很常見到指紋辨識的應用,或者藉由指紋辨識,來擴大服務情境的內容。

符合身分識別要素的內外部生理特徵。

生物特徵雖然能夠鎖定個人的獨特性,但也並非無所不能。以如今已成熟化的指紋辨識來看,指紋這項生理特徵的應用,也有幾項明顯的侷限性。首先,並非所有人的指紋都能夠被機器識別;其次,指紋的辨識與取得,目前仍必須直接仰賴特定的臨場感應器;再次,感應器上的指紋印痕也具有被有心人士複製的風險。

整體來說,指紋辨識技術仍有可靠性 (reliability) 不足,以及使用臨場設備的限制,因此,除了指紋辨識之外,銀行與金融業者也積極投入其他生物辨識的應用。

遠端身分識別、消費者體驗需求,帶動人臉辨識技術導入服務

衡量生物識別可靠性的指標分為兩類,分別是錯誤接受率 (False Acceptance Rate, FAR) 及錯誤拒絕率 (False Rejection Rate, FRR)

  • 錯誤接受率非法使用者被機器錯誤接受、通過認證的比率。
  • 錯誤拒絕率:合法使用者被機器錯誤拒絕的比率。

這兩個比率太高都會產生負面影響,前者高意味著安全性不佳,後者高則影響使用意願。

同樣在歐洲銀行業管理局 (EBA) 報告中,比較了不同的生物辨識技術,發現到:在一般的情況之下,人臉辨識與語音識別的錯誤接受率 (FAR) 較高,指紋、虹膜和視網膜識別則較低,但確切數據會隨著不同使用目的而變動。正因如此,現在的人臉辨識技術尚未普遍成為銀行金融服務的主要導入技術。

由於安全性的問題,人臉辨識技術尚未普遍成為銀行金融服務的主要導入技術。圖/pixabay

即使如此,仍可以看到部分銀行金融服務業者,比如匯豐銀行、新加坡華僑銀行等,近年開始嘗試將人臉辨識,導入於相關服務中。人臉辨識技術雖然尚未成熟,卻讓各大銀行願意花費昂貴成本和風險引進,倘若我們彙整這些業者的服務論述,大致可歸納為兩點:

  1. 提升安全防護:只有傳統密碼的情況下,一旦客戶的卡片密碼被不肖人士取得,可能就會造成客戶損失。然而若增加人臉辨識系統在 ATM 等設備上作為防護,不僅會使得盜領難度大增,銀行也能夠「即時」獲得警訊,未來在合理的法律規範下,還可以和警方合作,用來打擊犯罪。即時性防護,對於注重安全性的金融機構而言,人臉辨識提供的保護功能,會是最大的投入誘因。
  2. 增加客戶體驗、吸引客群:在網路銀行普及的同時,由於業務上仍有部分限制,實體據點的存在還是有其必要性。因此,透過人臉辨識提供優良的體驗以吸引客戶,對銀行來說會是一項誘因,例如 Pepper 機器人、Vedio Teller Machine、迎賓互動牆等等。這也意味著:銀行業者在因應行動服務等需求的同時,會需要非臨場、遠端臨場的身分識別技術。而在智慧型手機的鏡頭效能不斷增進的趨勢下,人臉在裝置上的映照與投射已成消費者最熟悉的使用習慣之一。

人臉辨識技術導入銀行金融服務案例

人臉辨識技術導入銀行金融服務案例

人臉辨識技術導入銀行金融服務案例

倘若我們觀察現有的案例,可以發現銀行業者對於人臉辨識的應用導入,包括手機銀行登入、臨場的身分識別等。而從消費者使用經驗的層面來看,則可進一步分為兩種類型:

  1. 「主動辨識」:可在辨識目標(消費者)無知覺的情況下運作,常被用來監控特定範圍內的動態目標
  2. 「被動辨識」:需經過辨識目標主動觸發,系統才會開始運作,而由於目標是靜態的,所以受到環境因素干擾的程度會較低,使辨識可靠性提升

但無論何種應用服務(如:登入手機 APP 使用行動銀行,或是在櫃檯協助行員辦理金融服務)對「可靠性」的需求都被視為銀行服務的核心,其中,又以被動辨識中涉及到的線上登入、支付等服務對於系統可靠性的需求最高,因為稍有不慎便可能造成金錢損失,或將個人資料外洩。

  • 註:銀行休息室的主動辨識功能,其需求是截然不同的,休息室使用人臉辨識的目的,是在客戶沒有意識到的情況下提供貼心的接待服務,對銀行來說偶爾辨識錯誤的影響不大,這種情況下主動的人臉辨識反而比較適合。

然而,若就現有的案例來看,目前在銀行服務中,單獨使用人臉辨識作為身份認證的服務仍有限,使用安全性需求高的功能,仍然還是會搭配「密碼」輸入,人臉辨識只作為多重認證的一環。但可以確定的是,未來人臉辨識能否完全取代其他身分認證的方式,甚至成為主流認證方式,辨識的可靠性會是一個很重要的關鍵

人臉辨識導入金融服務的爭議與挑戰

使用人臉辨識革新金融服務的同時,銀行要考量的不僅僅是技術的使用方式、成本等等,還要注意伴隨著創新而來的爭議與挑戰,接下來將分別說明可能遇到的問題。

技術可靠性仍有待提升,且需要有在地特徵的分析模型

人臉辨識錯誤的原因有很多,將影響可靠性。圖/wikimedia

對銀行來說,是否採用人臉辨識技術,或者更進一步決定技術運用的方式及程度,其中最大的關鍵在於可靠性,這些問題包括──究竟人臉辨識系統能不能準確分辨出長相相近的不同用戶?膚色與性別是否會導致辨識錯誤機率提高?

以目前當紅的 Face ID 為例,Apple 坦言雙胞胎和 13 歲以下的兒童用戶,辨識錯誤機率的確較高,並且建議他們使用密碼驗證,坊間也可看到民眾成功騙過系統的案例。學術研究方面,Buolamwini 與 Gebru 在 2018 所發表的「Gender Shades: Intersectional Accuracy Disparities in Commercial Gender Classification」一文中針對 3 款人臉辨識 API 進行測試,結果發現性別和膚色均會對準確度造成影響,可能原因除了膚色和燈光影響資料擷取外,資料收集時的偏誤也會降低人工智慧模型的判斷能力。假如資料中的白人男性偏多,模型對於白人男性的訓練量足夠,會有較佳的辨識能力,而相對的,其他特徵的使用者就比較容易出現誤判。

如果是用於一般的消費性電子產品,目前的人臉辨識技術對於提供用戶良好的使用體驗或許綽綽有餘,然而金融業對於安全的要求極高,在進一步提升技術可靠性之前,人臉辨識技術仍無法全面取代密碼作為主流驗證方式。

臉部特徵作為個人資料,如何兼顧資料安全性

用臉當資料會不會帶來很多問題呢?圖/wikipedia

想要將人臉辨識導入金融服務,那麼生物資訊的蒐集是無法避免的,因此,個資法的規範範圍是否影響技術的使用?這是銀行必須審慎評估的。這也意味著:除了技術層面以外,法律規範也是銀行引進服務前需要思考的。

首先,台灣的個人資料保護法中規定,無論公務機關或非公務機關,如要在未取得當事人同意的情況下蒐集資料,則需要基於執行法定職務或義務等必要情況,並且處理與利用資料同樣只能在法律規範的幾種特例下所使用,例如為了公共利益或是學術研究。

國外的法律規範更嚴謹,歐盟號稱史上最嚴的個資法 GDPR (General Data Protection Regulation) 於 2018 年 5 月 25 日開始實施,適用的範圍相當廣泛,不僅是歐盟境內,只要客戶、員工、供應商、政府機關等和歐盟公民相關就會受到 GDPR 的規範。受保護的資訊囊括了一切個人數據,從基本資料、宗教信仰、政治立場、網路瀏覽紀錄到指紋、虹膜、面部等生物特徵都在範圍內。這些法律上的限制意味著銀行引進人臉辨識前,必須謹慎評估使用情境是否合法,避免在追求便利服務的同時帶來更多額外的風險及成本。

技術不成熟引發的社會爭議

不小心抓錯人了?原來是人臉辨識出了錯。圖/imdb

人臉辨識的運用也引發了敏感的社會爭議。英國倫敦、南威爾斯等幾個地區的警方,自 2017 年開始在一些節慶、比賽或是流量大的十字路口使用人臉辨識系統,系統即時辨認鏡頭前是否出現和警方持有照片一致的面孔,若配對成功則會發出警報。

然而,其結果不盡理想,依據目前的測試結果,警報超過九成都是錯誤的,這讓英國民間的公民自由組織 Big Brother Watch非常不滿,認為這項不準確又昂貴的系統,對於抓捕真正的罪犯幫助有限,反而會造成無辜人民的自由受到侵害。同樣的問題也可能出現在銀行,如果銀行逕自使用人臉辨識系統分辨客戶,而未經過所有出現在鏡頭前的人同意,不論結果是否準確恐怕都難避免爭議。

整體而言,依據歐洲銀行業管理局 (European Banking Authority) 的觀點來看,人臉辨識的技術仍有相對較高的錯誤接受率 (False Acceptance Rate, FAR),換言之,對於銀行金融此種需要有高度可靠性、安全性的服務場域來說,技術仍然未能滿足,因此在目前,人臉辨識仍屬於多重辨識的一種(如搭配密碼、人臉資訊等)。

但相對於虹膜、指紋、靜脈等生物辨識技術來說,人臉辨識擁有較高的遠端臨場特性,也就是使用者可以在非臨場情境中使用銀行金融業者所提供的服務,確實在行動服務普及化趨勢之下,是業者願意投入的主要誘因。此外,倘若相關技術可以取得更多的在地化資料模型,並結合深度學習 (Deep Learning) 等技術,在未來仍可以降低錯誤識別的機率。

不過,其實人臉辨識能否成功導入於銀行金融服務,其最核心的問題仍在於:消費者是否信賴?這個問題所包含的個人資料保護,以及生物資訊第三方使用的正當性,才是這個議題最需要解決的課題。

一個只需要刷臉就可以登入的銀行帳戶,你的想法是甚麼呢?

參考文獻

  • Buolamwini, J., & Gebru, T. (2018). Gender Shades: Intersectional Accuracy Disparities in Commercial Gender Classification. Proceedings of Machine Learning Research 81, (pp. 1-15).
  • EU GDPR. GDPR Key Changes. Retrieved 11 23, 2018, from EU GDPR.ORG: https://eugdpr.org/
  • European Banking Authority. (2018). EBA Report on the Prudential Risks and Opportunities Arising for Institutions from Fintech. European Banking Authority.

The post 想領錢只要刷臉就行?銀行人臉辨識可沒這麼簡單 appeared first on PanSci 泛科學.


Viewing all articles
Browse latest Browse all 1714

Trending Articles



<script src="https://jsc.adskeeper.com/r/s/rssing.com.1596347.js" async> </script>